
 Advanced search

Linux Journal Issue #118/February 2004

Features

LAMP Development at Public Sector Web Sites by Tom Adelstein
Government IT staff and open-source consultants are keeping
public information open and accessible—and saving tax money
too.

The REDACLE Work-Flow Management System by Giovanni Organtini
and Luciano M. Barone

To build a product with 500,000 parts, you need an enterprise-
class work-flow management system.

Magnatune, an Open Music Experiment by John Buckman
Even if you're not reinventing the music business, what can you
do to help your Web site help customers?

DIY-IT: How Linux and Open Source Are Bringing Do-It-Yourself to
Information Technology by Doc Searls

A new balance of power in the IT market is giving customers
control of their own information destinies.

Indepth

Improving Perl Application Performance by Bruce W. Lowther
Get the most performance improvement for the least work.

Asterisk Open-Source PBX System by Brett Schwarz
Integrate land lines and VoIP on your company phone system.

A Guided Tour of Ethereal by Brad Hards
Troubleshoot your network and check security.

LinuxBIOS at Four by Ronald G. Minnich

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/118/7131.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7179.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7220.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7242.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7242.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/6540.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/6769.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7170.html

Will your favorite OS be your new favorite BIOS too?

Embedded

Driving Me Nuts I2C Drivers, Part II by Greg Kroah-Hartman

Toolbox

Kernel Korner I/O Schedulers by Robert Love
Cooking with Linux The Customer Is Always Served by Marcel
Gagné
Paranoid Penguin Seven Top Security Tools by Mick Bauer

Columns

EOF Linux vs. SCO—A Foregone Conclusion by Jim Ready

Reviews

AstroFlowGuard Appliance by Jose Nazario
UNIX Systems Programming: Communication, Concurrency and
Theory by Ibrahim Haddad

Departments

Letters
upFRONT
From the Editor Web Technolgies for Business Apps
Best of Technical Support
On the Web
New Products

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/118/7252.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/6931.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7243.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7235.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7230.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7094.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7057.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7057.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7218.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7238.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7256.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7255.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7253.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/7254.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 LAMP Development at Public Sector Web Sites

Tom Adelstein

Issue #118, February 2004

A new breed of IT firm is helping federal, state and local governments create a
“public infostructure” of interoperable, effective Web-based applications.

Linux runs right under the radar, not exactly in stealth mode, at many high-
profile government agencies, including the Departments of Defense, State and
Labor; the General Services Administration; the Census Bureau; and USAID. At
the heart of these applications lies the LAMP framework, which stands for
Linux, Apache, MySQL and PHP, Perl or Python. Tom Walker, former Lt.
Commander of Navy Special Operations and adamant proponent of open-
source technologies, said, “The next computing revolution, like that of the
Internet, will emerge from unexpected and perhaps even modest sources...the
next great leap in computing and software technology will come from small
firms who have the creativity and strength to stand up...by offering advanced
solutions using Open Source technologies.” Firms like Walker's group and a few
others have led the charge on Capitol Hill and elsewhere with open-source
software (OSS).

 Driving Linux

Lack of an integrated response within the US intelligence community prior to
the attacks of September 11, 2001 has heightened government awareness of
the disconnected databases in use throughout the country. As the
Congressional Report on Intelligence Actions and the September 11 attacks
revealed, “The intelligence community continues to be fragmented.” In
response to this situation, Peter Gallagher and Martin Hudson of devIS state,
“The need for governments to share information and solutions is fueling a new
framework for eGovernment problem solving.” Gallagher explains how Linux
has made its way into the public sector:

Early on we were able to use OSS only because the
applications were outsourced. We could not talk about
Linux, for instance. Now our clients really are

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

considering how OSS might improve their internal
environments—they want to talk to us about it. This is
a big change. It always is a pleasure to see the look on
a customer's face when they come to us asking about
how to take advantage of OSS and then we remind
them that together we have been for years!

We have shown that it works rather than just talking
about it. I expect that in a few years there won't be
interest in OSS for eGov per se, it will be just another
option—we think the winning option.

 Open-Source Software Institute

John Weathersby sits in his office at the University of Southern Mississippi
pulling together geographically diverse groups of people with a mission. He
runs the Open-Source Software Institute (OSSI), a nonprofit organization
comprised of corporate, government and academic representatives. OSSI exists
to serve as an advocate and as a collective resource and venue for the
promotion, development and implementation of open-source software
solutions between corporate, government and academic entities. Additionally,
OSSI serves as a forum for working committees to address open-source issues
in regards to government/industry standards, academic research, economic/
market and legislative policy.

OSSI members John Weathersby (front) and Richard Kuebler (middle) pause with Mark
Goodman (left) and Matthew Schick (right) from the University of Southern Mississippi as they
tour campus. The Administration building stands in the background.

https://secure2.linuxjournal.com/ljarchive/LJ/118/7131f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7131f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7131f1.large.jpg

Shortly after inception of the Web site Government Forge
(governmentforge.org), Weathersby reached out and began supporting Project
Leopard, a framework for developing LAMP applications in government. Within
two weeks, he pulled together open-source developers to facilitate building a
common infrastructure. He next found an immediate application need within
the judiciary branch.

Other recent wins include a Cooperative Research and Development
Agreement (CRADA) with the Naval Oceanographic Office delivered in August
2003. The Institute also serves as the coordination body securing government
certification for OpenSSL under FIPS 140-2 approved cryptography. In addition,
Weathersby has coordinated an effort in which the North Mississippi Education
Consortium (NMEC) will lead a pilot program designed to provide free and
open-source software to Mississippi's public school system. The program,
called Freedom to Learn, is part of a PhD-level study exploring alternative
technologies and methods of reducing costs while increasing efficiency and
student productivity within public school systems.

 devIS

Peter Gallagher and Martin Hudson direct traffic from the second floor of the
historic Underwood Building in Arlington, Virginia. Gallagher, a former Peace
Corps volunteer in Senegal, West Africa, saw the need for more appropriate
technology solutions in developing countries. Hudson had a deep interest in
making computers more useful and was pushing desktop applications. They
met as consultants, worked together at two different firms and then decided to
start their own company, Development Info Structure (devIS).

Using LAMP became Gallager and Hudson's stock and trade. As Peter explains:

The opportunity to develop a public info structure with
less redundancy, lower costs, greater flexibility and
better service is the eGovernment challenge in this
new world. devIS anticipates further expansion in the
coming years based on accelerating interest in open
standards, eGovernment and efficient use of open-
source software solutions. devIS has capabilities in
software development and outsourcing that are
unique for a small business, and projections indicate
rising demand and associated revenues. State and
local governments are showing increased interest in
open systems. devIS has begun actively soliciting
partnerships with these groups. Recent changes to
federal procurement rules now allow state and local
governments to purchase services from federal GSA
contracts, providing standard access to any
governmental agency at various levels.

http://governmentforge.org

OSS was essential to devIS as a small business
competing against mega-corporations for federal
work. Some of the high-end proprietary tools are so
expensive to get started with—you pay for partner
licensing and all types of required training, including
marketing...just to try the product.

The next big thing, now that we all know we need to
share data using XML standards and Web services, will
be to share components. I know it will be hard, but it
has to happen—eGovernment is accelerating and the
logic of public infostructure is too compelling—the
necessary standards and architectural boundaries are
becoming understood. Shared OSS components will
move eGovernment ahead quickly.

Martin Hudson adds:

The Government's adherence to published standards,
at multiple levels, is making the market more
competitive, making it possible for small companies
like devIS to compete on larger, mission-critical,
applications. When we formed devIS the higher order
systems looked more like fiefdoms for large
integrators—small business could not get in the door.

Our ability to implement inter-networking applications
fully—we host data servers for state, USAID, GSA and
labor—makes us different from most of the small
businesses in our sector. And we are able to do that
largely because of our roots in open source.

Gallager and Hudson's recent wins include the US Department of Labor's
Workforce Connections program. They elaborate:

This just-in-time dynamic content publishing
environment powers over 50 federal Web sites,
including DisabilityInfo.gov, the official portal for US
government information on people with disabilities.
The Workforce Connections application environment
also publishes structured learning content, including
question and answer interactions, all using the same
object-oriented engine.

The tool exceeds federal specifications for Section 508,
which is the federal implementation of the W3C
Accessibility Guidelines. IT contractors now are legally
liable to meet these requirements just as a
construction projects must provide handicapped
access. The system also meets another standard
important to the federal government called SCORM,
shareable content object reference model.

SCORM is an XML standard that makes it possible to
share and re-use learning objects independent of
proprietary authoring/presentation systems.

Workforce Connections allows for distributed
maintenance and instantaneous publishing by
government content experts through a secure
administration interface. The software was created in
Python using the Zope content application server and
runs on GNU/Linux Debian with the Apache Web
server. Many of the sites are private. devIS currently is
working with the DoL to release the product under an
open-source license.

devIS also is doing work for the US Agency for International Development's
TraiNet Project. Gallagher and Hudson describe TraiNet as:

...a secure, Internet-enabled visa application pre-
processor [that allows] worldwide staff to comply with
new security rules for training foreign nationals in the
US. A Web-based work-flow interface, connected to a
federated system architecture that relies on XML
messaging to compensate for inconsistencies in
connectivity among developing countries, provides a
robust environment.

The system is in use at over 300 locations around the
world to monitor training programs worth hundreds of
millions USD for thousands of students. The visa
processor has a secure machine-to-machine link with
Department of Homeland Security systems to facilitate
centralized production of the special student visas
used for government-funded programs. OSS
technologies used include GNU/Linux Debian, Apache,
PostgreSQL and XML Blaster. Server-side applications
are written in Python. devIS built, hosts and manages
this application, including help desk and other
operational support.

 gOSapps LLC

As a career Naval Officer, Tom Walker gained extensive experience in
programming and Web enabling computer systems that support international
military and special forces operations. After leaving the service, he used his
leadership abilities to build a client list for gOSapps LLC of more than 400
customers. To date, his organization has installed more than 500 LAMP
applications.

Walker's enthusiasm for open-source software is evident. He recently spoke at
a Department of Defense staff briefing on the security, reliability and
performance of open-source software. He told his audience:

The DOD decision [to use open-source software] will
result in widespread changes in software development
and acquisition throughout the federal government
and with government contractors. The challenge for
many departments is that right now the new policy has

raised more questions than answers in a fast growing
segment of the technology industry.

One of gOSapps LLC's projects is the Open Source Initiate Review (OSIR). OSIR
provides formal expert analysis of existing system architectures and
applications to help government agencies reach a high level of preparedness
for open-source transition.

Recent wins for Walker include the US Navy's Technical Support Group
Summary. Walker writes:

We provided the architecture, design and deployment
of secure Web and CD-based training programs. The
Technical Support Group (TSG) required a reliable
method to deliver training on secure advanced
communications system to remote locations. This
training required delivery by a variety of transfer
methods.

Additionally, due to ever-changing technological
changes, the data had to be updated easily, minimizing
the costs for program changes. We deployed special
strategies and created a multimedia training system
that was both informative and entertaining. The data is
transferable on CD or over secure communication
links.

Additionally, by allowing last minute compilation of
data from a secure database, the training is always up
to date. This data compilation is performed
automatically, minimizing the training costs and time
requirements for the technical support staff. An
internal object-oriented framework utilized results in
lower development time and costs, far fewer pre-QA
defects and a richer feature set. The MySQL relational
database allowed us to use complex data-driven
applications, coupled with reliability and speed. We
had a direct role in all aspects of the development
cycle, coupled with close communication and feedback
from the client, resulting in an advanced yet intuitive
interface to meet client needs.

Walker's team also developed an on-line LAMP application to manage the
database of storm water facilities and their ratings for James County, Virginia.
Walker explains:

We developed the front-end interface for searching
and viewing facility information. We also developed
complete functional design specifications, carried
through to development and deployment of multi-
tiered relational database-driven Web applications.

The system is designed to meet the county's specific
need to post and broadcast notifications of watershed

quality results. The entire application is maintained
through an intranet system, all managed by a unified
administrative application.

 National Center for State Courts

James E. McMillan, employed at the National Center for State Courts has
fashioned a Web site that says, “If you have ever wanted to try out court E-filing,
now you can. Just click on the E-File a Document link above or the button below
and fill in the forms.” The Web site also states, “You will be sent a password
(you must have a working e-mail address) and attach your document. Or, you
can fill out our demonstration complaint form.” James directs the Court
Technology Laborartory (CTL, ctl.ncsc.dni.us/about_jim_mcmillan.htm).

McMillan has made his LAMP Project available to all the courts in the world. The
inCounter Web site provides the downloadable source code to the inCounter
Electronic Filing Manager Project. Look for a link that says “inCounter Open
Source E-filing System” on James' Web page mentioned above. The link will take
you to the current location of his OSS project.

Why are we doing this? To help the courts and legal system adopt electronic
communication. Specifically, the inCounter Electronic Filing Manager Project is
an effort to build the core functionality of an electronic filing inbox that has the
following initial goals:

• Demonstrate electronic court document filing.
• Demonstrate a simple-to-use system (limited initial scope).
• Create an expandable and customizable system through use of open-

source code.
• Demonstrate support for CourtXML/OASIS LegalXML filing standards.
• Demonstrate support of the W3C SOAP XML communications standard (to

connect commercial and advanced systems).
• Demonstrate the use of free Linux, Apache, Perl and MySQL software in a

court application.

McMillan joined the National Center for State Courts in October 1990. Since
then, more than 1,000 visits from courts in 50 states and more than 70 foreign
nations have been held in the CTL. Over 10,000 people have viewed remote CTL
presentations. In November 2000, the TIES-CTL Project received the State
Justice Institute's Howell Heflin Outstanding Project award.

With credentials comes credibility and McMillan has plenty. He previously held
positions with the US Department of Justice and the Los Angeles Superior
Court. He was a keynote speaker at the Fifth National Court Technology
Conference and a lecturer at the National Judicial College, University of

http://ctl.ncsc.dni.us/about_jim_mcmillan.htm

Southern California Judicial Administration Program, Smithsonian Associates,
and many other national and international court, law and technology interest
groups.

 Conclusion

Few of us have ever heard of the open-source organizations mentioned above.
They have success because they deliver government solutions. In so many
ways, they have paved the way for the rest of us. I hope you enjoyed finding out
about them as much as I did in locating them.

Tom Adelstein works as a Linux consultant in Dallas, Texas. His current interest
lies in the field of eGovernment applications. Tom is involved in the launch of
Government Forge, a Web site devoted to state and local governments
interested in Linux and open source. He also is a member of the Open-Source
Software Institute.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 The REDACLE Work-Flow Management System

Giovanni Organtini

Luciano M. Barone

Issue #118, February 2004

A MySQL-based system handles the data management, quality control and
bookkeeping for building a new scientific instrument with 500,000 parts. Here's
how you can adapt it for your manufacturing process.

Subnuclear particles, tiny objects indeed, need to be revealed and measured by
huge detectors. This field is known as high-energy Physics (HEP), and
experimental HEP is a cutting-edge science. It uses and promotes the most
recent technologies, it invents new tools and it encourages knowledge
exchange. For all of these reasons, HEP has long been the realm of open-source
software.

The bad news is HEP has become increasingly complicated; what was built in a
craftsman-like style yesterday is now an industrial process that requires
dedicated management software, usually expensive. We are living this
experience in our experiment: a large international collaboration engaged in
the construction of a 12,500-ton detector, called CMS (Compact Muon
Solenoid), scheduled to take data at the CERN, Geneva, Large Hadron Collider in
2007. Our group in Rome, endowed by the Italian Institute for Nuclear Physics
(INFN) and located in the Physics Department of the University La Sapienza, is
working on the construction of the electromagnetic calorimeter. The
calorimeter is made from about 500,000 parts, including scintillating crystals
and photo-detectors. This process requires data management, quality control
and bookkeeping, all of which relies on work-flow management.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/118/7179f1.large.jpg

Figure 1. Today's high-energy Physics is an industrial process.

 Work-Flow Management

A work-flow management system (WFMS) is “software that enables the
automation of a business process, in whole or part, during which documents,
information or tasks are passed from one participant to another for action,
according to a set of procedural rules” (www.e-workflow.org). Using a WFMS
allows a coordinator to establish the flow of operations needed to realize a
product. Operators are guided through the construction sequence, and
unforeseen deviations from the sequence are avoided. Each operation
generates data, such as measurements, comments and tags, that are recorded
in a database.

Originally, a WFMS based on proprietary components was used in our
production for about two years. It proved to be clumsy, slow, resource-
demanding, hard to resume after hang-ups and troublesome to integrate with
other tools. When the flow of incoming calorimeter parts became higher and
the assembly rate could not catch up, we made the decision to develop our
own solution, based on open-source components. Our requirements were to
avoid the previous inefficiencies, to interface transparently with input and
output data and to have a flexible solution. We chose to implement a system
based on the LAMP (Linux, Apache, MySQL and Perl/PHP/Python) platform.
Each component of LAMP has an important role: Linux and Apache provide the
basic infrastructure for services and programming; MySQL is the back end of
our WFMS; and Perl/PHP manage the interaction operator database.

https://secure2.linuxjournal.com/ljarchive/LJ/118/7179f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7179f1.large.jpg
http://www.e-workflow.org

 REDACLE: the Database Design

Our WFMS is called REDACLE (Relational ECAL Database at Construction LEvel).
In more detail, our requirements for the database design were:

1. High flexibility: the database structure should not change when adding
new products or activities.

2. Ability to store quality control (QC) data: quality assurance is an important
part of our work and collected data must be available to everyone for
statistical analysis.

3. Variety of access: the database should be able to be queried through
different methods, including shells, programs, scripts and the Web.

Requirement 3 automatically was satisfied by MySQL, and this fact, together
with its simplicity and completeness, was the main reason we adopted LAMP. In
order to satisfy the first two requirements, we developed a set of tables
following a pattern, which is a common and standard way to solve a given
problem, as in OO programming. We used the pattern called homomorphism,
which is a simple representation of a many-to-one relationship. In practice,
each part of the specific process with which we are dealing is represented in
the database as records in two tables, an object table and an object definition
table. Each object definition has an ID, actually a MySQL primary key number.
Many objects share the same object definition, and the relationship between
them is provided by a foreign key in the object table containing the
corresponding definition ID.

An example might explain this design better. As stated in the introduction, our
calorimeter is composed of many parts of different types. Each kind of part,
such as a crystal, has many instances. The whole calorimeter has about 75,000
crystals. Parts and part definitions are kept in two separate database tables, as
shown in Tables 1 and 2. Different instances of a part share the same part
definition by the proper part ID in the partDefinition_id column. In these two
tables, the part 33105000006306 is a type 1L barrel crystal, as shown by its
partDefinition_id 195 found in the partDefinition table.

Table 1. The Part Table in REDACLE

ID partDefinition_id

33105000006306 195

33105000006307 196

33105000006308 197

Table 2. The partDefinition Table in REDACLE

The real benefit of this approach is flexibility. If, for any reason, new parts enter
the game, the REDACLE database structure will not be modified. It is enough to
add a new record to the definition table and relate it to new parts. But the
REDACLE database is even more flexible; if we were building cars rather than
calorimeters, the database structure would be exactly the same.

Activities are represented using the same approach: an Activity table holds
instances of records described in the ActivityDescription table. Inserting a new
activity within the work flow is a matter of supplying its description to the
definition table and relating it to its occurrences in the Activity table. Again, with
this design it is possible to describe a completely different business seamlessly.
For mail delivery, for instance, the definition records could contain the
description of the operations to be done on reception, shunting and delivery,
while the Activity table could contain records with information about when a
given operation was done on which parcel.

The work flow is defined by collecting several activity definitions and defining
the order in which they should be executed. The interface software then checks
that the activity being executed at a given time follows, in the work-flow
definition, the last completed activity performed on a part. Activities can be
skipped or repeated according to the interface software.

For quality control data we adopted the same homomorphic pattern by adding
a further level of abstraction. We defined characteristics as data collected
during a given activity performed on a part. The Characteristics table, however,
does not store actual values, because they can be of a different nature—strings,
numbers or even more complex types. The Characteristics table simply is a
collection of keys: one of them links the characteristics to its definition in the

ID partDefinition_id

33105000006309 198

33105000006310 196

ID Name Subname Type

195 crystal Barrel 1L

196 capsule Barrel T4

197 Alveola Barrel 3

198 subunit Barrel 5

charDefinition table. Actual characteristics are kept in separate tables according
to their type.

Our process has three data types: single floating-point numbers, triplets of
numbers and strings. The length of a crystal, for example, is a single number
and is stored in the Value table. Some measurements are taken at different
points along the crystal axis and in different conditions. The optical
transmission, for one, is measured every 2cm at different wavelengths. It
constitutes a triplet, the first number representing the position, the second the
wavelength and the third the transmission. Each triplet is stored as a record in
the multiValue table. The same is true for strings: operators perform a visual
inspection of each crystal before manipulation, and they may provide
comments to illustrate possible defects. In Tables 3 through 7, we show the
above-mentioned tables for characteristics representation. The part
33101000018045 has been measured for length and transmission (TTO). Length
is 229.7815mm in table value. The char_id field is 134821 pointing in the
Characteristics table to charDefinition_id=6 corresponding to crystal length. The
TTO is a set of triplets in the multiValue table. The visual inspection of that
crystal resulted in the comment nonhomogeneous in the charValue table.

Table 3. charDefinition

Table 4. Characteristics

Table 5. Value

ID Description Name Unit activityDef_id

2 result of visual inspection VIS_I_OPER 2

6 crystal length DL mm 3

26 transversal transmission TTO mm#nm#% 4

ID charDefinition_id part_id activity_id

106035 2 33101000018045 10660

134821 6 33101000018045 16093

135252 26 33101000018045 16182

ID x char_id

37614 229.7815 134821

Table 6. multiValue

Table 7. charValue

Again, this method makes REDACLE qualified for different types of businesses;
in a dairy it could be used to record the bacterial load for each batch of milk,
besides the producer (a character string), as characteristics. In addition, a
completely new data type, such as pictures or sounds, could be added to the
database without disturbing the schema simply by defining a new table. Adding
pictures, for instance, implies the creation of a table with three fields: primary
key, picture data as a BLOB and the relation to the Characteristics table, which
is expressed by an integer ID. The MySQL code to create such a table is:

CREATE TABLE picture (
 id INT NOT NULL AUTO_INCREMENT,
 data BLOB,
 char_id INT,
 INDEX (char_id),
 PRIMARY KEY (id)
);

ID x y z char_id

748867 15 700 76.1 135252

748907 35 700 75.7 135252

748947 55 700 75.9 135252

748987 75 700 76.1 135252

749027 95 700 76 135252

749067 115 700 75.5 135252

749107 135 700 76 135252

749147 155 700 75.7 135252

749187 175 700 76.3 135252

749227 195 700 76 135252

749267 215 700 74.6 135252

ID value char_id

2872 nonhomogeneous 106035

 REDACLE Interfaces

In our application, humans interact with the database in a multitude of ways—
with the MySQL client, C++ and Java programs, Perl scripts and PHP scripts
through Web pages. The use of a Web browser to render a graphical user
interface (GUI) provides considerable advantages. The GUI is portable and does
not require installation of specific components, no time is wasted on graphics,
and the Web browser environment is well known by now to both operators or
customers.

Figure 2. A set of five crystals being measured to determine their dimensions. Instruments
need to report their measurements to the work-flow management system.

Another significant feature of REDACLE is its interface to other machines.
During the calorimeter construction process, automatic machines take

measurements of crystals and other parts without any human support (Figure
2). These machines, then, must be able to interact with REDACLE to learn the
right sequence of operations to perform, to inform it about the start and the
end time of the operations and to provide data to be stored as characteristics.

Our goal was to create a system that would allow almost any device to interact
with REDACLE. We avoided imposing a given programming language or
providing libraries for all the possible devices, because it does not scale with
the market. Furthermore, some devices can be embedded systems with
proprietary software.

We developed a dæmon called the Instrument Agent (IA) to act as an interface
between REDACLE and instruments. The IA is a process that connects to an
Internet port and is able to read ASCII characters and write them to that port.
Instruments are required only to be able to connect to the network and send
strings over the connection.

The sequence of operations is as follows:

• After connecting, an instrument declares the part on which it is operating.
• The IA queries the REDACLE database and searches for the last completed

activity for that part in the work flow. The command the instrument
should execute is stored in the database as a description field in the
activityDefinition table.

• The IA sends the instrument the proper command.
• Upon recognition of the command, the instrument executes it, and the IA

inserts a new activity in the REDACLE database after acknowledgement.
• At the end of the job, the IA updates the activity just inserted, marks it as

FINISHED and gets the data from the instrument as XML-formatted
strings.

The result of the activity may contain both multiValue and charValue fields.
Single values are formatted as follows:

<RE><FI>field name<VA>field value</VA></FI>...</RE>

<RE> stands for result, <FI> is field and <VA> is value. From the field name, the
instrument agent obtains the characteristics definition ID and fills in the
appropriate table according to the field value format (value for numbers and
charValue for strings). The multiValue table is populated if the result is of the
form:

<RE><NT>ntuple name

<FI>field name<VA>field value</VA></FI>
...
</NT></RE>

<NT> here stands for n-tuple, a collection of n elements.

Instrument software developers need not have knowledge of the details of the
REDACLE database; they simply have to be instructed on the string formats to
be used. No libraries to link to the program are prescribed, nor files to be
included. The programming language is not imposed. The only requirement is
to be able to provide a network connection to the IA.

Besides the GUI and instrument interfaces, we developed a set of ancillary
command-line scripts for administrators and coordinators. In addition, we
created a small library to run C++ programs and Perl scripts over the database
without needing to formulate SQL queries.

 Experience and Perspectives

REDACLE was released in our laboratory four months after the first discussions
of the project were held. The whole system contains about 10,000 lines of code
in Perl, C++, PHP and Java. The resources needed to run the software are small
compared to the ones requested by the former system, hosted on a dual
800MHz Pentium III server. That system saturated the CPU at about 100% and
occupied almost all of the 512MB of RAM. We also needed to upgrade all the
client PCs, doubling their memories to support Java GUIs. So we planned a
server upgrade to a dual 1GHz Pentium III with 1GB of RAM to improve the
performance of the previous system. When using REDACLE, we discovered,
amazingly enough, that CPU load was negligible and the average memory
usage was 140–200MB.

It became clear that we had a need for tools to import from or export to the
previous database, which still was used in other labs. These tools were built in
Perl quickly, to read or write XML files, and we were able to import all the old
data into REDACLE in one day.

Currently, we have about 13,000 parts in the database. The stored
characteristics are 97,000, each of which may be composed of several values,
for a total database size of 50MB. Out of the 15 tables the multiValue table,
containing more than 1,000,000 records, is the largest at 41MB.

But the most spectacular result was obtained by comparing the time spent by
operators in the calorimeter assembling. Before the introduction of REDACLE,
25% of the operators' time was wasted in the interaction with the work-flow
manager. Using REDACLE, the interaction between operators and the database

takes a negligible amount of time, improving the overall detector assembling
efficiency.

Moreover, operators soon familiarized themselves with REDACLE's flexibility
and started requesting new tools and interfaces. What before required weeks
to develop or might have been almost impossible to build, now can be
implemented in a short time with REDACLE and LAMP—between a few hours
and two or three days.

The extraordinary flexibility of the REDACLE database design makes it practical
for many different business processes and industrial applications, clearly
illustrating how open-source software can be superior to proprietary offerings.
In the future, we plan to support even more complex work-flow models as well
as a library of frequently used queries and functions to be employed in the
development of other REDACLE-based projects.

Figure 3. Success: a finished module being loaded into a container for transportation to CERN.

Resources

The Cern Site: www.cern.ch

The CMS Experiment in Rome: www.roma1.infn.it/exp/cms

MySQL Reference Site: www.mysql.com

PHP Reference Site: www.php.net

https://secure2.linuxjournal.com/ljarchive/LJ/118/7179f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7179f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7179f3.large.jpg
http://www.cern.ch
http://www.roma1.infn.it/exp/cms
http://www.mysql.com
http://www.php.net

The Workflow Portal: www.e-workflow.org

Giovanni Organtini (G.Organtini@roma1.infn.it) teaches Computing and
Programming for Physicists at the University of Rome. He has been a Linux user
both for research and teaching for nine years, and he has been married to
Federica for ten. He is involved in the design and realization of particle
detectors and advanced computing for high-energy Physics.

Luciano M. Barone (Luciano.Barone@roma1.infn.it) is Associate Professor of
Physics at Rome University La Sapienza. Born to physics as a high-energy
experimentalist, he quickly turned to computing applications in the same field.
He likes to tackle large problems and tame them to the finest detail.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.e-workflow.org
mailto:G.Organtini@roma1.infn.it
mailto:Luciano.Barone@roma1.infn.it
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Magnatune, an Open Music Experiment

John Buckman

Issue #118, February 2004

It's a record label, but it's not evil. How to build a business without ripping off
artists and annoying customers, and why you might need three different kinds
of Web server software.

Magnatune is an Internet music record label. It was born out of personal
experiences from my wife releasing her CD on a British record label and some
observations I'd gathered about the music industry. Magnatune is different
from traditional labels in the following ways:

• We split the sale price of all purchases 50/50 with our artists.
• We sell only downloads and never use digital rights management (DRM).

Purchasers may download albums as perfect-quality WAV or FLAC files, as
high-quality variable bit-rate Ogg Vorbis files or MP3s or as 128k MP3s.
Buyers can choose how much they want to pay, from $5 to $18 US.

• You can listen to all our music as streaming 128k MP3s (entire albums, not
samples) as well as on Shoutcast MP3 stations. Two clicks on Magnatune
queues a never-ending selection of our music in the genre of your choice.
Our assumption is you eventually will hear something you like and want
to buy it.

• All our free music is licensed using the Creative Commons Attribution-
NonCommercial-ShareAlike license. This allows noncommercial use of the
music at no cost, as well as derivative works, as long as the same Creative
Commons license applies. If someone uses our music for commercial
purposes, they have to license it for a modest fee. All our licensing is done
on-line with a standard rate calculator, and we don't discriminate based
on the kind of use. For example, we can't and won't block your use of our
music if we don't agree with your views or your musical style.

• We're successful and profitable. Our top artists are making about $6,000
US a year in royalties, while the average musician makes about $1,500 US

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

per year. We work directly with musicians or musician-owned labels,
never with labels who funnel the money to themselves.

Magnatune was born out of personal experiences from my wife releasing her
CD on a British record label and some observations I'd gathered about the
music industry.

When my wife was signed to a British record label, we were really excited. In
the end, she sold 1,000 CDs, lost all rights to her music for ten years (even
though the CD has been out of print for many years) and earned a total of $45
in royalties.

The record label that signed her wasn't evil. They were one of the good guys,
and gave her a 70/30 split of the profits, of which there were none. The label
got battered at every turn: distributors refused to carry the label's CDs unless it
spent thousands on useless print ads, record stores demanded graft in order to
stock the albums and, in general, all forces colluded to destroy this small,
progressive label.

 Industry Observations

Radio is boring. Everyone I know listens to interesting music, yet good music
rarely is played on the air. Most musical genres barely are visible in record
stores, and they are totally absent from the airwaves. These days, radio plays
mostly Country, Pop and Rock, with a little bit of dull, safe Classical thrown in.

CDs cost too much, and artists receive only 20 cents to a dollar for each CD
sold, if they're lucky. And, most CDs quickly go out of print. I buy more CDs
from eBay than from Amazon.

On-line sales, such as Amazon.com, often cost artists 50% of their already
pathetic royalty, due to a common record contract provision. International
sales and markdowns often net the artist no royalties.

Record labels lock their artists in to legal agreements that hold them for a
decade or more. If the agreement is not working out, labels don't print the
band's recordings but nonetheless keep artists locked in to the contract, forcing
them to produce new albums each year. Even hugely successful artists often
end up owing their record labels money because the advances they're initially
paid are structured as a loan to the artist. Furthermore, the label does its
accounting in such a way that profits rarely are shown on the record company's
books, hence no money exists to pay down the advance.

Using the Internet to listen to music usually is tedious. There are too many ads,
too many clicks and the sound quality is not great. Simply put, it's too much

work for not enough reward. A well-run Internet radio station, such as
Shoutcast or Spinner, solves that, but the entrenched record industry wants to
kill them too, through onerous licensing terms and annoying DRM schemes.

Given all these factors, I thought, “why not build a record label that has a clue?”
Create a label that helps artists get exposure, make at least as much money as
they would make at traditional labels and get fans and concerts. Magnatune is
my project. The goal is to find a way to run a record label in the Internet reality:
file trading, Internet Radio, musicians' rights, the whole nine yards. These aren't
things that can be ignored.

 The Home Page

Figure 1. The Magnatune home page (magnatune.com) answers visitors' top eight questions.

https://secure2.linuxjournal.com/ljarchive/LJ/118/7220f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7220f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7220f1.large.jpg
http://magnatune.com

I believe that the home page of any successful company, project or
organization needs to address eight issues immediately. As shown in Figure 1,
Magnatune's home pages answers all eight:

1. Where am I? — a graphic logo on the top left or top right does the trick.
It's even better if you have a catchy line. For Magnatune, it's “We are not
evil”.

2. Why should I care? — a one-line description of what you do and, if
possible, why someone should be interested. For Magnatune, it's “Internet
music without the guilt” followed by “Magnatune, the Open Music Record
Label”.

3. What do you want me to do? — for first-time visitors, it should be clear
what the next step is. For Magnatune, I want people to listen to the music
immediately, so it says “Explore a music genre: Classical, Electronica, Metal
& Punk, New Age, Rock, World, Others”.

4. Why is this cool? — there are way too many sites on the Internet, and
people have a limited amount of time. You've got the visitor's attention for
a few seconds, so you need to explain quickly why this is something he or
she wants to support. If you're doing e-commerce, expect that your
visitors are jaded. If you answered the second question well, you've got
another 30 seconds of their attention. Magnatune starts with: “We're a
record label. But we're not evil. We call it 'try before you buy.' It's the
shareware model applied to music.” The concepts of record label, not evil
and shareware are an odd combination, so now they're interested.

5. What's new? — give people an incentive to come back to your site by
making it easy to see what's changed. There's a lot of new stuff at
Magnatune (new press coverage, for example), but most people care only
about our new artists and albums, so that's what's on the home page.

6. Newsletter signup — every Web site should have a newsletter. If you put
the signup on the home page, you can expect 2% to 5% of Web site
visitors to sign up.

7. I want to know more — an “about” section also is crucial. The founders
should explain why they created the site, project or company.

8. I want to steer — despite all these hints on what to do next, visitors often
want to decide for themselves where to go. On Magnatune, 15% of people
coming to the home page click on the Artists tab. Make the major site
navigation options clear.

 The Genre Page

https://secure2.linuxjournal.com/ljarchive/LJ/118/7220f2.large.jpg

Figure 2. “Play” links on the Electronica page (magnatune.com/genres/electronica) offer
immediate gratification.

My main gripe with most music sites is they take too much of my time, when
what I want to do is play music and get back to my work. My second gripe is
they usually don't give you enough music and not at a high enough quality to
make a decision. Most of the people I know buy music by hearing it first, either
on the radio, at a concert, at a friend's house, at a restaurant and so on.
Because only a small number of visitors to a music site already know the bands,
isn't it reasonable to let visitors listen and make up their minds? At Magnatune,
you can listen all you want, with minimal effort, to high-quality 128k MP3s.

Once a user clicks on the Magnatune home page to select a genre, such as
Electronica (see Figure 2), a Web page is displayed that shows four main
choices: 1) listen to every album in Electronica, one album after another, 2)
listen to a mix of our Electronica artists, 3) listen to the entire album of any of
our Electronica artists and 4) click on an artist to learn more. The first three
choices offer users immediate gratification by allowing them to hear music
immediately.

People would prefer to find music from their friends or on their own than be
force-fed by the major music outlets—radio and MTV. In the 1980s, most
software couldn't be evaluated before it was purchased, yet today no one buys

https://secure2.linuxjournal.com/ljarchive/LJ/118/7220f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7220f2.large.jpg
http://magnatune.com/genres/electronica

any software without first trying it out. Eventually, all music will be shareware:
the competitive advantage simply is too great.

 Software Used

Magnatune runs on open-source software. Five 2.4GHz 1U rackmount boxes
run Linux. Disk storage is provided by hardware RAID on four rackmount drive
arrays, each with seven drives for a total of 28 drives. Each array is configured
for RAID5 with one hot spare.

Apache 2 running PHP and OpenSSL serves all the HTML pages. When
Magnatune was Slashdotted, I found that Apache could not keep up with the
load for images. All HTTP image requests now are off-loaded to AOLserver,
which had the lowest latency to serve images at high loads.

Mathopd, a single-threaded asynchronous HTTP server, is used to serve all MP3
files, as it is extremely scalable with large files. We customized Mathopd to
return the same Expires: HTTP response header on images that Yahoo
uses. Mathopd has more latency than AOLserver, which is why we don't use it
for serving small images.

All Web pages in Magnatune run PHP. Purchases are logged to a MySQL
database. A Perl script creates the track listings and m3u playlists. Tcl scripts
handle all other tasks, such as making ZIP, Ogg Vorbis and FLAC files and
making per-album password configuration files for Apache. Apache HTTP
passwords are used to protect all purchasable downloads. We use rsync to
distribute files among the servers.

 E-Commerce

Several unusual features can be found in Magnatune's music-download
purchasing process. Buyers determine how much they want to pay, we don't
use a shopping cart, we support PayPal and anonymous Visa purchases are
allowed.

Clicking the Buy button brings up a page with the question “How much do you
want to pay?” and offers choices from $5 to $18, with $8 as the recommended
price (see Figure 3). A disclaimer states, “50% goes directly to the artist, so
please be generous”. The average purchase price in September 2003 was $9.82,
which shows that when given a choice, buyers prefer to pay more than we ask.

Figure 3. Because 50% goes to the artists, buyers choose to pay more than the minimum
price.

I decided not to use a shopping cart at Magnatune because of the widely
discussed problem of shopping-cart abandonment. When people are excited
about an album and click the Buy button, that's the time to capture the sale.
With a shopping cart in place, a user often goes looking for more things to add
and that initial buying compulsion is gone if they don't find something.

On any given day, we find that 30%–50% of purchasers pay with PayPal. I
believe many people prefer PayPal because with a credit card the merchant still
has your credit-card number after the transaction completes. Your personal
data is out of your control. With PayPal, the transaction ends with your
payment, and no future risk is possible.

PayPal offers two ways for merchants to be notified of payments. IPN is a
system where PayPal issues an HTTP callback to your Web server with a specific

ID. Your Web server software then takes the ID and calls PayPal over HTTP to
fetch transaction details. This is a highly secure option, but it has two problems:
it is significant work to code, and it doesn't allow an immediate download after
purchase, because your Web server needs to wait for the notification. Many
shopping-cart programs support IPN and deliver download instructions by e-
mail. We do not use an IPN/e-mail-based system, because we found that ISP-
based antispam programs blocked many of our download-instruction e-mails,
which led to very unhappy buyers who were not aware of the blocked e-mail.

We use the second, simpler PayPal system, in which PayPal sends the user back
to our site with HTTP POST data after a transaction occurs. This is simpler to
program and fairly reliable. Not all PayPal payments are instantaneous,
however. The payment does not arrive in the vendor's account for several days
and may not come at all, so the merchant has to decide whether to allow the
immediate download. We decided to trust our users and give them the
download immediately.

Our credit-card processor would like us to ask for a name, phone number and
postal address (as well as three-digit AVS) on credit-card transactions, but we're
under no obligation to do so. Our credit-card company charges us a 1% fee for
not having this data at checkout, but on a $10 purchase this is only 10 cents.
This fee pales in comparison to the 25-cent Visa fee and the 25-cent Internet-
gateway fee, so we feel it's well worth it.

On the Magnatune Buy page, we require only a customer's credit-card number
and expiration date—that's all we need to complete the transaction. We do ask
for a name and e-mail address, stating: “If you want to be anonymous, you can
omit your e-mail and name, but we won't be able to e-mail you a copy of your
order.” Asking for a minimal amount of data at purchase time makes it quick for
people to fill out the purchase form. Additionally, not requiring an e-mail
address means the buyer doesn't need to worry about e-commerce spam
resulting from the purchase.

 After the Payment

Immediately after making your purchase, you are sent to a Thank You page that
contains a URL for downloading the music. A simple four-character HTTP name
and password is given. The instructions also are e-mailed if an e-mail address
was provided with the purchase. The download page provides the album in a
variety of formats (see Figure 4). You can download a perfect-quality WAV or
FLAC file and have an exact replica of the original CD. Ogg Vorbis, MP3-128 and
MP3-VBR files also are provided. You can download any and all variations you
like for as long as you like (passwords don't expire). The entire album is
available as a single ZIP file, for ease of downloading. The ZIP file provides a
modest amount of compression, about 10% on WAVs. More importantly, it

means you can click Download on one file, let it run for an hour (on a DSL or
cable line) and have the entire album without any more fuss.

Figure 4. It's download time. Pick a format, any format.

 Licensing

Clicking the License button next to any album brings up a page (see Figure 5)
with the question “what kind of music license?” Sixteen different scenarios are
displayed, such as Movie Use, Radio Advertising, Web Site, CD Compilations and
even On-Hold Music for telephone systems. The connected page outlines the
relevant variables for that scenario, and a price quote is given. The user enters
the project details and then is sent to a Check Out page with a music license
agreement, which is valid as soon as the fee is paid.

https://secure2.linuxjournal.com/ljarchive/LJ/118/7220f5.large.jpg

Figure 5. Making a movie? Need legal music for your music-on-hold system? Try the licensing
page for each album.

 What's Next?

Since its launch in May 2003, Magnatune has been discussed on everything
from Slashdot, Fark and BoingBoing to Wired and NPR. During these press
events, we've experienced huge bursts of Web traffic. I run five servers at two
different locations, each with 100Mb feeds, and send load-balanced pages with
dynamic PHP URLs to each of them. I've found this to be sufficient for the
current demands. However, as Magnatune has been growing by 30% in traffic
and revenue each month, I'm seriously looking at peer-to-peer as a load
balancing and scalability solution.

As I'm writing this article, Magnatune has about 60 musicians and 130 albums
and is growing by about 15 musicians and 30 albums per month. My top
musicians should see about $6,000 US of royalties in a year. On average,
musicians should see about $1,500 US each year. If the 30% growth holds up,
I'll be able to pay my musicians even more. More than anything, that's what
excites me: that I'm able to have a material impact on these musicians. They
are excited by the success, people are hearing their music, and the artists have
the financial wherewithal to continue recording great albums.

John Buckman is the founder of Magnatune, an Internet-based record
company. He is the Webmaster of Piazzolla (www.piazzolla.org), a Tango music

https://secure2.linuxjournal.com/ljarchive/LJ/118/7220f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7220f5.large.jpg
http://www.piazzolla.org

site, runs the Internet Lute Society (www.lutesociety.com) and co-runs
www.JSBach.org, the main Web site for the classical composer J. S. Bach.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.lutesociety.com
http://www.JSBach.org
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 DIY-IT: How Linux and Open Source Are Bringing Do-It-

Yourself to Information Technology

Doc Searls

Issue #118, February 2004

Follow the conventional IT media and you'll miss the new level of self-reliance
and participation in Linux at companies large and small. Executives from Ernie
Ball, Morgan Stanley and Ticketmaster explain the shift to “do-it-yourself”.

Without a doubt, Linux and open source are changing IT (Information
Technology) at companies of every size. But how? When you read the IT
magazines, go to the IT conferences and listen to the IT analysts, you get the
same message you got ten or twenty years ago: vendors are in charge.

Of the 62 stories in Computerworld.com's current Week In Review (mid-
November 2003), 51 stories, or 82%, are either about vendors—“Red Hat goes
Live with Fedora”—or refer to vendors in their headlines—“IBM's Palmisano
says US must innovate to keep jobs.” In reality, though, vendors' and
customers' IT worlds are steeped in a variety of development communities.
Both vendors and customers develop goods for themselves, as well as for sale
and for use by the rest of the world.

Over the past year, I've been on assignment by Linux Journal to study what's
really happening in the IT marketplace and the deeper roles played by Linux
and open-source development in that marketplace. My first report was “How
Linux Makes Companies Smarter” /article/6585, in the July 2003 Linux Journal.
This second report focuses on changes in IT itself. What I've found is an
increasing reliance on personal and development community initiative and the
freedom and trust making that possible. In sum, what I'm seeing is a do-it-
yourself movement in companies everywhere, a growth in self-reliance I'm
calling Do-It-Yourself IT (DIY-IT).

Phil Moore, the Executive Director of Enterprise Application Infrastructure for
Morgan Stanley and Company, explains:

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/111/6585.html

Open source has lowered the threshold at which do-it-
yourself is possible. You can't do everything with
building blocks from vendors. They pretend they're
selling you a prefab building and they're not. They're
selling you pipes and fittings and stuff to put it
together.

In reality, to build an enterprise, you have to have a set
of experts in your IT shop who can put it all together.
Certainly, historically you need a lot of expertise to get
anything done, because this stuff really isn't easy to
put together. But if you've been led by the vendors to
believe that everything dovetails together nicely, like
you see in the .Net ads, or in any major marketing
campaign that promises nirvana, you've got a
problem.

You always need a certain amount of do-it-
yourselfness. Consultants don't walk in, deliver an
enterprise and walk out, saying “call me in six months
for an upgrade.” It's organic. An enterprise is changing
constantly. Even the walls in your house right now are
on their way to needing another paint job.

Although DIY-IT involves a reduction in dependency on vendors, it doesn't
mean vendors are bad or that they don't play extremely important roles in the
marketplace. It does mean that the marketplace no longer belongs to them. It
means a new balance of power exists between supply and demand as does a
new division of responsibilities between vendor, customer and development
communities. It seems the software business is growing up.

In this report, we look at several key factors involved in the DIY-IT movement:
what leadership really means, the role of the Net, the rewards of courage, the
cost-savings imperative, valuing talent, where we stand, untold stories and
perspective.

 Follow Which Leader?

Looking to leaders for leadership is natural. But what about the leadership of
developments that have no direct leader—developments where the leadership
comes largely from within, from shared conviction and the practices that
express it?

That's what we have with Linux, with free software and with open source. Linux
is a development project, not a company. It is not contained by a corporate
structure. Like a tectonic plate, it is held together by cohesion more than by
organizational forces. Free software and open source are value systems and
development methodologies. To treat them strictly as populations or as classes
of goods is to miss the nature and scope of what they're about.

The Net not only supports much of what we now take for granted in the
technical world, it puts everybody and everything in a position to get more
connected, more informed, more intelligent. Public bits outsmart secret ones,
even if secret ones still have economic and other forms of value.

Craig McLane, VP of Technology at Ticketmaster, puts it this way:

The best thing about the Internet, to me, is it mitigates
tremendously the friction imposed by time and
distance. You can take people who have individual
passions and great talents, unite them and eliminate
many of the obstacles to communications.

The Open Source community truly is global, and that
matters an awful lot to us. We're an international
company and we like access to very smart people
worldwide as we grow—people who still are accessible
and relatively close-knit.

The notion that you can take part in this community,
do great things, be supported and foster this whole
breeding ground of innovation is absolutely incredible.

 The Networked IT World

Trying to imagine a civilized corporate or governmental organization today that
is not sustained by the Net, and therefore also by open-source software, is
almost impossible. Organizations everywhere also are coming to recognize that
they depend on open-source values as well as open-source talent and code. In
just the last year it became clear to governments around the world that their
computing infrastructure needed to be built on stuff that is open, that has no
secrets. They want to be able to inspect it to make sure it's sound, reliable and
open to improvement.

Take Sterling Ball, the leader and namesake of Ernie Ball, the guitar string
maker. You can't press SCAN on the car radio without hearing an Ernie Ball
string. What makes Sterling Ball an open-source revolutionary isn't his technical
chops, it's his independence—his guts. This became evident after Ernie Ball was
raided in 2000 by federal marshals as part of an unannounced software audit
by the Business Software Alliance (BSA), which found unauthorized “pirated”
software on some of Ernie Ball's computers. The BSA still brags about the raid
on its Web site. Here's how Sterling Ball described it when I interviewed him at
LinuxWorld in August 2003:

A disgruntled ex-employee saw a nail-your-butt
opportunity, so he called the BSA. I was sued under
federal seal. There was no warning. We were raided at
10 am on a Friday. We were shut down and ordered
not to touch our computers. There were armed

marshals. Our employees were sitting there going
“What's the matter? Is our company criminal? Are we
crooks?” Then they sent out press releases....It's
coincidental that they always send these out after a
business is closed.

We're the number one employer in terms of
manufacturing in San Luis Obispo. We're a big fish in a
little pond. The headline reads, “Ernie Ball Raided for
Piracy”, and the story says, “Company officials
unavailable for comment”. Well, no [surprise]. I was at
home. And I never say “No comment”. So, when it
came time to tell my story, I said, “They came for bear
and got squirrel.”

Ernie Ball went to court and paid a fine, but that didn't end the matter:

The worst thing was when Microsoft printed a four-
color reproduction of that newspaper article on an
executive's desk, sent it to every registered Microsoft
user and said “Don't get caught like Ernie Ball—a fine
company that found out just how hard it is to stay
compliant. Call us. We'll give you a free audit and sell
you software at 20% off.” Keep in mind that we already
had downloaded the BSA self-auditing software and it
didn't work. This was fear-based marketing, with
government help.

Sterling Ball didn't get mad or get even—he got out:

Everybody thought I was crazy. The IT people thought
they were going to get fired. I said “no”, because I've
never seen any greater programming in the world than
“You can't do business unless you've got an office suite
on your desk.” Hey, I'm talking here at LinuxWorld
because I changed my word processor. The solution
everybody [at our company] uses is a cocktail of open-
source stuff. Nobody showed us how to do it. We had
to figure it out ourselves.

Today Ernie Ball's servers run Red Hat Linux. Its desktops are GNOME on thin
Sun clients, with applications that run off a Linux server. The company time
clock and security software run on Linux. The company e-mail is Ximian's
Evolution, and their office suite is OpenOffice.org.

The lesson here isn't about technology. The lesson is about independence,
integrity and the courage to break free of mental programming. It's a lesson
about the souls of individuals, of organizations and of a marketplace that still
thinks vendors are in charge, even though the success of the Net and the Open
Source movement prove they are not.

 The Cost-Savings Imperative

Breaking free is akin to awakening, and it doesn't happen only for companies
the size of Ernie Ball. Take Ticketmaster, for example. Here's Craig McLane
again, speaking at LinuxWorld:

We support 8,000 clients in ten countries. In 2002 we
sold 95 million tickets through channels that
represented over four billion US dollars. This puts us in
the top 25 of all retail Web properties—actually
number two, between Dell and Amazon. So we're
doing a lot of business, but on behalf of other people
who have entrusted us with their business.

We have 3,500 outlets, 19 call centers and the
Ticketmaster.com Web site, which does about 50% of
our business. We also provide box-office solutions. If
you've ever purchased a ticket at a box office, that's
also a Ticketmaster system, with the same inventory
bucket.

Our product and technology organization is the
cornerstone of Ticketmaster as a company. We've got
250 people devoted to product and technology in an
organization that has about 2,000 full-time employees.

We provide solutions and systems, but we also
support those 8,000 clients. In many cases, because of
the nature of the business—highly customized, highly
variable traffic and all kinds of strange configurations
that actually are much different from any other retail
businesses—there are no commercial solutions
available for what we need to do.

In fact, we are one of the first application service
providers: extending the service to thousands of
clients, actually writing the code, hosting the system,
providing the customer service and charging a fee per
unit sold. We have to build high-volume systems for
very specific and peculiar businesses. Open source
allows us to do [this] as well or better—at least in our
experience—at half the price of commercial solutions.

That's why Ticketmaster converted the
Ticketmaster.com site primarily to open-source
technologies over the course of the last 18 months.

McLane showed a small spreadsheet at this point in the talk (Table 1) that
outlined the cost of the company's computing needs in terms of open-source
and proprietary options. He continues:

Table 1. Ticketmaster Computing Options

It's really all about licensing costs. We buy the the
same class of machine, same configuration, from the
same vendor. But we're using all open-source
technologies in these areas, and we pay nothing for
licensing. So you can see that we save 50 cents on
every dollar we invest and get the same or better
performance. And we see better support from the
community than we typically get from commercial
vendors.

The Web site costs, in hardware and capital
development, a couple million bucks. So it's a small
fractional part. It doesn't materially change the
business from Wall Street's perspective or from the
CFO's perspective. But it matters to us because we can
use the money that's made available to employ more
smart people. And that's really the key.

 Valuing Talent

To Craig McLane, open-source human resources are collective as well as
individual. To explain, he quotes T. S. Elliot: “No poet, no artist of any art, has
his complete meaning alone”. He adds:

By providing really robust tools to our people and by
pulling in more people who are interested in solving
problems, who can work autonomously, but who like
to have the benefit of a larger community while they're
working....

[People like] Stas Beckman are doing core work for
us...mod_perl 2.0. [He's] doing a lot of the work that
will benefit the community, which benefits us. He's
also working on database connection pooling....So we
get to take the lead on doing some things that have
broad general benefits for everybody. Geoffrey Young
is going to start working with us. He's going to be
working on things that can be done autonomously,
that benefit the community but also provide
immediate benefit for our business when deployed in
very specific ways.

Ticketmaster.com Open Source Proprietary

400 PC-based systems $1,000,000 $1,000,000

Operating system $0 $600,000

Web server software $0 $120,000

Database software $0 $240,000

Total $1,000,000 $1,960,000

Our teams have ownership over their tools. They also
don't have an excuse. They can't say that a vendor
doesn't have an answer or isn't getting back on the
phone. Because everybody knows that there's a
community out there and you have access to the
source. Everything is in front of you. So there's an
accountability that's reinforced when you have source
code and a community that knows so much and is so
willing to respond.

You're also more motivated. When people pick their
tools, the work invariably makes sense to them.
They're also working side by side with the people
creating the tools that we're using day by day. You
can't get that anywhere else.

Once again, a company gets smart and saves money by aligning itself with its
own smart employees and the development communities to which they belong.

What's different between now and 10 or 20 years ago? McLane says it's “the
amplifying effects of the Internet on the power of the individual”, adding, “only
a fool would ignore that”.

 Where We Stand

We read about IT brass going gaga for Linux almost every day. Ken Harris, CIO
of Gap Corp., recently said he's in favor of “Anything touching Linux”. Emea
Harris of Lehman Brothers said, “We're very aggressive around migrating to
Linux.”

When I spoke about DIY-IT at the O'Reilly Open Source Convention in July 2003,
the majority of those attending the talk (about 100 in the room) was rank-and-
file IT guys, mostly from large companies. Phil Moore was one of them. One
audience member said some companies feel that their own open-source
developments give them a competitive edge, and they don't want to talk about
it for that reason. “They don't want their competitors to know how they do it
faster and cheaper”, she said.

 Untold Stories

What other kinds of stories are we not hearing, then? Here are a few, in no
particular order:

• Debian: “I'm seeing far more Debian than any report gives it credit for”,
says one technologist working for a large vendor that has partnerships
with Red Hat and SuSE. “Red Hat and SuSE may sell more, so they show up
on surveys that follow sales. But in terms of actual implementation,
Debian is pretty big.”

• Education: at different periods during the past 30 years, companies like
Digital, Apple, IBM and Microsoft have had successful programs for
getting students hooked on their goods. Now those students are
swimming in a sea of free software and old or cheap PCs on which to run
it. Web services consultant and author Doug Kaye says “High schools and
colleges are now all about open source....It's LAMP everywhere.”

• The power of gravy: a number of IT people have told me that vendor
relationships are valued highly, period, and always will be. “You get
freebies. Tickets to games. Free dinners. Trips to conferences. A lot of
people love that gravy train.”

• Small consultant opportunities: one IT guy at a large company told me:

The do-it-yourself movement inside IT is lowering the
barriers to entry for small contractors too. Thirty years
ago, big companies went to big vendors for big
solutions. That's not the case anymore. You've got
small vendors and consultants with 15, 20 or 40
people going in and delivering hugely successful
solutions to Fortune 50 companies.

Phil Moore adds:

When you contract for an open-source solution, all the
middle layers of the contracting nightmare you get
when you go through big vendors are gone. If you
contract for a simple change from a big vendor, you
can be in for spending a lot of money. The cheapest
vendor contract I've ever been involved with is a half-
million dollars. At the very least you've got two gigantic
legal departments involved to begin with, just to
negotiate the contract. Yet I've gone and got similar
order-of-magnitude technology changes on open-
source products for below five figures. This is a gold
mine. This frees up a huge part of my budget. And
time-wise the process is highly streamlined.

 Perspective

Without vendors, we wouldn't have magazines or tradeshows, to name two of
my favorite things. It's important to the market's ecology for vendors to push
their goods and tell their stories. The problem we've had—and still have—is a
long lag between what's happening in the marketplace and how we cover the
subject. And I believe that lag derives from the young ages of the industries
involved. The computer industry is about 50 years old. The software industry is
half that age. The Internet—which changed everything—began supporting
business only about nine years ago. What we need are more stories from the
demand side of the marketplace and more courage by those in positions to tell
them. We also need publications that welcome those stories, with authors and
editors and analysts to help tell them.

My friend Christopher Lydon (blogs.law.harvard.edu/lydon), a former reporter
for the New York Times and host of NPR's “Connections”, believes what's
happening in our industry—this DIY-IT movement—is profoundly Emersonian.
He points to this encouraging prose from the author's seminal essay, “Self-
Reliance” (www.emersoncentral.com/selfreliance.htm):

To believe your own thought, to believe that what is
true for you in your private heart is true for all men,
that is genius. Speak your latent conviction, and it shall
be the universal sense; for the inmost in due time
becomes the outmost....There is a time in every man's
education when he arrives at the conviction that envy
is ignorance; that imitation is suicide; that he must
take himself for better, for worse, as his portion; that
though the wide universe is full of good, no kernel of
nourishing corn can come to him but through his toil
bestowed on that plot of ground which is given to him
to till. The power which resides in him is new in nature,
and none but he knows what that is which he can do,
nor does he know until he has tried.

We'll be doing our part here at Linux Journal. And, as always, we rely on your
help as well.

Doc Searls (info@linuxjournal.com) is senior editor of Linux Journal. His
monthly column is Linux for Suits, and his biweekly newsletter is SuitWatch.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://blogs.law.harvard.edu/lydon
http://www.emersoncentral.com/selfreliance.htm
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Improving Perl Application Performance

Bruce W. Lowther

Issue #118, February 2004

The four basic performance-tuning steps to improve an existing application's
performance.

A fellow developer and I have been working on a data collection application
primarily written in Perl. The application retrieves measurement files from a
directory, parses the files, performs some statistical calculations and writes the
results to a database. We needed to improve the application's performance so
that it would handle a considerable load while being used in production.

This paper introduces four performance-tuning steps: identification,
benchmarking, refactoring and verification. These steps are applied to an
existing application to improve its performance. A function is identified as being
a possible performance problem, and a baseline benchmark of that function is
established. Several optimizations are applied iteratively to the function, and
the performance improvements are compared against the baseline.

 Identifying Performance Problems

The first task at hand in improving the performance of an application is to
determine what parts of the application are not performing as well as they
should. In this case I used two techniques to identify potential performance
problems, code review and profiling.

A performance code review is the process of reading through the code looking
for suspicious operations. The advantage of code review is the reviewer can
observe the flow of data through the application. Understanding the flow of
data through the application helps identify any control loops that can be
eliminated. It also helps identify sections of code that should be further
scrutinized with application profiling. I do not advise combining a performance
code review with other types of code review, such as a code review for
standards compliance.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Application profiling is the process of monitoring the execution of an
application to determine where the most time is spent and how frequently
operations are performed. In this case, I used a Perl package called
Benchmark::Timer. This package provides functions that I use to mark the
beginning and end of interesting sections of code. Each of these marked
sections of code are identified by a label. When the program is run and a
marked section is entered, the time taken within that marked section is
recorded.

Adding profiling sections to an application is an intrusive technique; it changes
the behavior of the code. In other words, it is possible for the profiling code to
overshadow or obscure a performance problem. In the early stages of
performance tuning, this may not be a problem because the magnitude of the
performance problem will be significantly larger than the performance impact
of the profiling code. However, as performance issues are eliminated, it is more
likely that a subsequent performance issue will be harder to distinguish. Like
many things, performance improvement is an iterative process.

In our case, profiling some sections of the code indicated that a considerable
amount of time was being spent calculating statistics of data collected off the
machine. I reviewed the code related to these statistics calculations and noticed
that a function to calculate standard deviation, std_dev, was used frequently.
The std_dev calculation caught my eye for two reasons. First, because
calculating the standard deviation requires calculating the mean and the mean
of the sum of squares for the entire measurement set, the naï¿½e calculation
for std_dev uses two loops when it could be done with one loop. Secondly, I
noticed that the entire data array was being passed into the std_dev function
on the stack rather than being passed as a reference. I thought these two items
together might indicate a performance issue worth examining.

 Benchmarking

After identifying a function that could be improved, I proceeded to the next
step, benchmarking the function. Benchmarking is the process of establishing a
baseline measurement for comparison. Creating a benchmark is the only way
to know whether a modification actually has improved the performance of
something. All the benchmarks presented here are time-based. Fortunately, a
Perl package called Benchmark was developed specifically for generating time-
based benchmarks.

I copied the std_dev function (Listing 1) out of the application and into a test
script. By moving the function to a test script, I could benchmark it without
affecting the data collection application. In order to get a representative
benchmark, I needed to duplicate the load that existed in the data collection
application. After examining the data processed by the data collection

application, I determined that a shuffled set of all the numbers between 0 and
999,999 would be adequate.

Listing 1. The Baseline Implementation of std_dev

sub mean {
 my $result;
 foreach (@_) { $result += $_ }
 return $result / @_;
}

sub std_dev {
 my $mean = mean(@_);
 my @elem_squared;
 foreach (@_) {
 push (@elem_squared, ($_ **2));
 }
 return sqrt(mean(@elem_squared) - ($mean ** 2));
}

In order to yield a reliable benchmark, the std_dev function must be repeated
several times. The more times the function is run, the more reliable or
consistent the benchmark will be. The number of times to repeat the
benchmark can be set specifically with the Perl Benchmark package. For
example, run this benchmark 10,000 times. Alternatively, the package accepts a
time duration, in which case the benchmark is repeated as many times as
possible within the allotted time. All benchmarks shown in this article use an
iteration parameter of 10 seconds. Calculating the standard deviation of
1,000,000 data elements for at least 10 seconds produced the result:

12 wallclock secs (10.57 usr + 0.02 sys
 = 10.59 CPU) @ 0.28/s (n = 3)

This information indicates that the benchmark measurement took 12 seconds
to run. The benchmark tool was able to execute the function 0.28 times per
second or, taking the inverse, 3.5 seconds per iteration. The benchmark utility
was able to execute the function only three times (n = 3) in the allotted 10 CPU
seconds. Throughout this paper, results are measured using seconds per
iteration (s/iter). The lower the number, the better the performance. For
example, an instantaneous function call would take 0 s/iter, and a really bad
function call would take 60 s/iter. Now that I have a baseline measurement of
the std_dev performance, I can measure the effects of refactoring the function.

Although three samples are enough to identify issues with the std_dev
calculation, a more in-depth performance analysis should have more samples.

 Refactoring and Verification

After establishing the benchmark shown in Listing 1, I refined the std_dev
algorithm in two iterations. The first refinement, called std_dev_ref, was to

change the parameter passing from “pass by value” to “pass by reference” in
both the std_dev function and the mean function that is called by std_dev. The
resulting functions are shown in Listing 2. Theoretically, this will increase the
performance of both functions by avoiding copying the entire contents of the
data array onto the stack before the call to std_dev and the subsequent call to
mean.

Listing 2. Replacing Call by Value with Call by Reference

sub mean_ref {
 my $result;
 my $ar = shift;
 foreach (@$ar) { $result += $_ }
 return $result / scalar(@$ar);
}

sub std_dev_ref {
 my $ar = shift;
 my $mean = mean_ref($ar);
 my @elem_squared;
 foreach (@$ar) {
 push (@elem_squared, ($_ **2));
 }
 return sqrt(mean_ref(\@elem_squared) -
 ($mean ** 2));
}

The second refinement, called std_dev_ref_sum, was to remove the mean
function altogether. The mean and the mean of the sum of squares are
combined into one loop through the entire data set. This refinement, shown in
Listing 3, removes at least two iterations over the data. Table 1 contains a
summary of the benchmark times.

Listing 3. After Elimination of the Mean Function

sub std_dev_ref_sum {
 my $ar = shift;
 my $elements = scalar @$ar;
 my $sum = 0;
 my $sumsq = 0;

 foreach (@$ar) {
 $sum += $_;
 $sumsq += ($_ **2);
 }
 return sqrt($sumsq/$elements -
 (($sum/$elements) ** 2));
}

Table 1. Baseline and Two Refinements

 s/iter

std_dev 3.53

std_dev_ref 2.93

As hoped, an incremental improvement between each of the refinements is
shown in Table 1. Between the std_dev and std_dev_ref functions there is a 20%
improvement, and between std_dev and std_dev_ref_sum functions there is a
158% improvement. This seems to confirm my expectation that pass by
reference is faster than pass by value in Perl. Also, as expected, removing two
loops through the data improved the performance of the std_dev_ref_sum
function. After both of these refinements, the function can calculate the
standard deviation of 1,000,000 items in 1.37 seconds. Although this is
considerably better than the original, I still think there is room for
improvement.

 Hasn't Someone Already Done This?

A number of open-source Perl packages are available. Hopefully, I could find a
standard deviation calculation that was faster than my best attempt so far. I
found and downloaded a statistics package from CPAN called
Statistics::Descriptive. I created a function called std_dev_pm that used the
Statistics::Descriptive package. The code for this function is shown in Listing 4.

Listing 4. The std_dev_pm Function

sub std_dev_pm {
 my $stat = new Statistics::Descriptive::Sparse();
 $stat->add_data(@_);
 return $stat->standard_deviation();
}

Using this function, however, produced a result of 6.80 s/iter; 48% worse than
the baseline std_dev function. This is not altogether unexpected considering
that the Statistics::Descriptive package uses an object interface. Each
calculation includes the overhead of constructing and destructing a
Statistics::Descriptive::Sparse object. This is not to say that Statistics::Descriptive
is a bad package. It contains a considerable number of statistical calculations
written in Perl and is easy to use for calculations that don't have to be fast.
However, for our specific case, speed is more important.

 An Out-of-Language Experience

All languages have good and bad qualities. Perl, for example, is a good general-
purpose language but is not the best for number-crunching calculations. With
this in mind, I decided to rewrite the standard deviation function in C to see if it
improved performance.

 s/iter

std_dev_ref_sum 1.37

In the case of the data collection application, it would be counter-productive to
rewrite the entire project in C. Quite a few specific Perl utilities make it the best
language for most of the application. An alternative to rewriting the application
is to rewrite only the functions that specifically need performance
improvement. This is done by wrapping a standard deviation function written in
C into a Perl module. Wrapping the C function allows us to keep the majority of
the program in Perl but allows us to mix in C and C++ where appropriate.

Writing a Perl wrapper over an existing C or C++ interface requires using XS. XS
is a tool that is distributed with the Perl package, and it is documented in the
perlxs Perl document. You also need some of the information located in the
perlguts document. Using XS, I created a Perl package called OAFastStats
containing a standard deviation function implemented in C. This function,
shown in Listing 5, can then be called directly from Perl. For comparison
purposes, this standard deviation function will be called std_dev_OAFast.

Listing 5. The XS Implementation

double
std_dev(sv)
 INPUT:
 SV * sv
 CODE:
 double sum = 0;
 double sumsq = 0;
 double mean = 0;

 /* Dereference a scalar to retrieve
 an array value */
 AV* data = (AV*)SvRV(sv);

 /* Determine the length of the array */
 I32 arrayLen = av_len(data);

 if(arrayLen > 0)
 {
 for(I32 i = 0; i <= arrayLen; i++)
 {
 /* Fetch the scalar located at i
 from the array.*/
 SV** pvalue = av_fetch(data,i,0);

 /* Dereference the scalar into
 a numeric value. */
 double value = SvNV(*pvalue);

 /* collect the sum and the
 sum of squares. */
 sum += value;
 sumsq += value * value;

 }
 mean = (sum/(arrayLen+1));
 RETVAL = sqrt((sumsq/(arrayLen+1)) -
 (mean * mean));
 }
 else
 {
 RETVAL = 0;
 }

 OUTPUT:

 RETVAL

The comparison between the baseline standard deviation function and the C
function wrapped with XS is presented in Table 2, showing a significant
speedup. The C function (std_dev_ref_OAFast) is 1,175% faster than the
baseline function (std_dev), and it is 395% faster than the best Perl
implementation (std_dev_ref_sum).

Table 2. Baseline and Fastest Perl Implementations Compared with C

 Conclusions

During this process I identified a function that probably wasn't performing as
well as it could. I was able to achieve several modest performance gains by
refining the logic of the calculation in Perl. I also tried using an open-source
package, only to find that it was 48% worse than my original function. Finally, I
implemented the standard deviation function in C and exposed it to Perl
through an XS layer. The C version showed a 1,175% speedup compared to the
original Perl version. Improvements are summarized in Figure 1.

Figure 1. Comparison of All Implementations

In most cases, I have seen Perl performance that rivals C; however, this
obviously isn't one of those cases. Perl is a good general-purpose language, and
one of its benefits is the ability to step out of the language and implement code
in a lower-level language. Don't be afraid of language mix-ins when you really
need to improve performance, as long as you understand that there is a

 s/iter

std_dev 3.53

std_dev_ref_sum 1.37

std_dev_OAFast 0.277

maintenance cost. The disadvantage of introducing additional languages is that
it will increase the burden for those that must maintain the application in the
future. They will need to know C and understand XS functions. However, in our
case, the improved performance significantly outweighed the impact of
supporting XS.

Bruce W. Lowther (blowther@micron.com) is a software engineer for Micron
Technology, Inc., in Boise, Idaho. He has worked at Micron for nine years and
has spent the past five years there working on tools to help integrate
semiconductor equipment into the Micron manufacturing process. He received
his undergraduate and Master's degrees in Computer Science from the
University of Idaho.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:blowther@micron.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Asterisk Open-Source PBX System

Brett Schwarz

Issue #118, February 2004

Use one system to manage voice over IP and conventional phone lines, manage
voice mail and run CGI-like applications for phone users.

So, you need to deploy a Private Branch eXchange (PBX) system for your small
office. Or, maybe you want a voice-mail system running on your Linux box at
home. What about an interactive voice response (IVR) system for home
automation? Voice over IP (VoIP) capabilities would be nice too. How do you do
it? One very interesting and powerful solution is Asterisk, a GPLed PBX system
built on Linux that bridges the gap between traditional telephony, such as your
telephone line, and VoIP. Asterisk also supports a host of other features that
make it an attractive solution. In this article, I touch on some of these features
and give you enough information to get started without having to buy any
special hardware.

 Background

Asterisk is an open-source project sponsored by Digium. The primary
maintainer is Mark Spencer, but numerous patches have been contributed
from the community. As of this writing, it runs only on Linux for Intel, although
there was some success in the past with Linux PPC, and an effort is underway
to port Asterisk to *BSD. Digium also sells various hardware components that
operate with Asterisk (see Resources). These components are PCI cards that
connect standard analog phone lines to your computer. Other hardware is
supported as well, such as hardware from Dialogic and Quicknet. Asterisk has
its own VoIP protocol, called IAX, but it also supports SIP and H.323. This leads
us to one of Asterisk's most powerful features: its ability to connect different
technologies within the same feature-rich environment. For example, you could
have IAX, SIP, H.323 and a regular telephone line connecting through Asterisk
(see Figure 1—courtesy of Digium).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Figure 1. Asterisk can connect regular telephone lines and multiple VoIP standards.

The developer can extend Asterisk by working with the C API or by using AGIs,
which are analogous to CGI scripts. AGIs can be written in any language and are
executed as an external process. They are the easiest and most flexible way to
extend Asterisk's capabilities (see Listing 1).

Listing 1. Example Caller ID AGI Script

#!/bin/sh
\
exec tclsh "$0" ${1+"$@"}

set port 10000
set hosts [list 192.168.123.166 192.168.123.168]

##
Sends the info to the hosts
##
proc sendInfo {ip_ port_ callerid_} {

 if {[catch {socket $ip_ $port_} sock]} {
 return
 }

 fconfigure $sock -buffering line
 puts $sock $callerid_
 close $sock

 return
}

##
We get all of the variables from stdin;
they start with "agi_"; and populate
an array with the values.
##
while {[gets stdin l] > 0} {
 if {[regexp {^agi_([\w]+):[\s]+(.*)} $l -> k v]} {
 set AGI($k) $v
 }
}

##
Send the callerid info to each host
that we have listed
##
foreach H $hosts {
 sendInfo $H $port $AGI(callerid)

}

 Getting Started

An official release hasn't happened for quite a while, but there is talk of one
coming. Currently, the best way to get Asterisk is by CVS:

export CVSROOT=\
:pserver:anoncvs@cvs.digium.com:/usr/cvsroot
cvs login (password is "anoncvs")
cvs co asterisk

If you plan on using a PCI card from Digium, you should look at zaptel as well. If
you plan on having connectivity, you need to check out libpri.

There is no configure script, so you simply use make. You also need readline,
OpenSSL and Linux 2.4.x with the kernel sources installed in order to compile
Asterisk properly:

cd asterisk
make clean install samples

This compiles Asterisk, installs it and also installs the sample configuration files.
The last target overwrites any existing configuration files, so either skip this
target or back up any existing configuration files if you want to preserve them.
If you are using zaptel or ISDN, compile those before compiling Asterisk.
Asterisk is installed in /usr/sbin/ with the configuration files in /etc/asterisk/ by
default. Voice-mail messages are stored in /var/spool/asterisk/voicemail/. CDRs
for billing and log files are located under /var/log/asterisk/.

You can start Asterisk by typing asterisk at the command line. However, the
best way to use Asterisk during the testing phase is to run it with the -vvvc
options. The -vvv option is extra-verbose output, and the -c option gives you a
console prompt, which allows you to interact with the Asterisk process. For
example, you can submit commands to Asterisk, such as management and
status commands.

Asterisk's operation and functionality relies on several configuration files. We
discuss three of them in this article, but several others exist. Here, we set up
Asterisk so that users can call each other through IAX. We also set up voice mail
and give users a way to manage their voice-mail messages.

 The Dialplan

Before getting into the setup of Asterisk, we should have a general
understanding of the dialplan. It is flexible and powerful but also can be
confusing. The dialplan is used to define number translations and routing and,
therefore, is the heart of Asterisk. The dialplan defines contexts, which are
containers for extensions (digit patterns) that provide specific functionality. For
instance, you may want to provide a context for people who are in your office
or home, so that they have certain dialing privileges. You also could set up an
external or guest context that allows only limited dialing capabilities, such as no
long distance. Context names are enclosed by brackets ([]). The extensions
associated with the context follow the name.

Each extension can have several steps (priorities) associated with it. The call
flow continues sequentially unless an application returns -1, the call is
terminated or the application redirects the call flow. The syntax of an extension
entry looks like this:

exten => <exten>,<priority>,<application(args)>

Below are a couple of examples:

exten => 9911,1,Wait(1)
exten => 9911,2,Dial(Zap/1/${EXTEN:1})

An extension is denoted by using exten =>. In this example, 9911 is the
extension; 1 and 2 are the priorities or step numbers (these need to be
sequential); and Wait and Dial are the applications. Asterisk uses applications to
process each step within an extension. You can get help for the different
applications from the Asterisk console by typing show applications to list
the supported applications and show application <application> to
display the help message.

Extension matching can be done on the dialed number as well as the calling
number. This allows for greater flexibility when processing calls. Patterns also
can be used, and these are preceded with an underscore (_):

• N—a single digit between 2 and 9.
• X—a single digit between 0 and 9.
• [12-4]—any digit within the brackets.
• . —wild card.

For example, the extension _NXX5551212 would match any information
number, regardless of area code.

Extensions can be any alphanumeric string. Some special characters are built-
in:

• s—start here when no dialed digits are received, as from an incoming call
from an analog line.

• t—used when a timeout occurs.
• i—used for invalid dialed digits.
• o—operator extension.
• h—hangup extension.

 Creating IAX Users

The first file we create is the iax.conf file (see Listing 2). This file controls the
operation of the IAX protocol and defines users of the protocol. The protocol
has two versions. The old one is IAX, and the new one is IAX2.

Listing 2. iax.conf File

[general]
port=5036
bindaddr=0.0.0.0
amaflags=default
accountcode=home

[brett]
type=friend
host=dynamic
secret=brettsecret
context=cg1
callerid="brett <111>"

[maria]
type=friend
host=dynamic
secret=mariasecret
context=cg1
callerid="maria <222>"

[niko]
type=friend
host=dynamic
secret=nikosecret
context=cg2
accountcode=external
callerid="Niko <333>"

The first section of the configuration file is the general section, which defines
parameters for the IAX protocol. Four parameters are listed, but others can be
defined as well. The port parameter is the port number over which IAX will
communicate. It defaults to 5036, so strictly speaking, that entry is not needed.
You can use the bindaddr parameter to tell Asterisk to bind to a particular IP

address—for machines with multiple Ethernet cards. A bindaddr of 0.0.0.0
attempts to bind to all IP addresses. The parameters amaflags and
accountcode are used for CDRs. When they are defined in the general section,
they are used as the default values. You also can define them on a per-user
basis. The values that amaflags can accept are billing, documentation, omit and
default. accountcode can be an arbitrary value. For this setup, I use home for
users local to my LAN and external for users outside of my LAN. Several other
parameters have been omitted, but most of them are performance
parameters.

The remaining sections are user definitions. I have three users: brett, maria and
niko. The type definition has three possible values: a peer can receive calls, a
user can place calls and a friend can do both. I have defined all of them as type
friend. I defined all of the hosts as being dynamic, but if any host has a static IP
address, you can specify that instead. secret is the password the user must
provide when connecting to this Asterisk server. Two contexts are used in this
file for users: [cg1] and [cg2]. I explain these in more detail when discussing the
extensions.conf file, but effectively, these contexts enable the dialing privileges
for the user.

 Setting Up Voice Mail

The next file is voicemail.conf (Listing 3). Again, it has a general section that
deals with general or global parameters for voice mail. The first parameter,
format, lists the audio format of the messages. The next two parameters are
used for e-mail notification: serveremail is the source e-mail address (from
field), and attach instructs Asterisk to attach the message to the e-mail. In our
example, we do not want the message attached. Again, some parameters have
been omitted.

<mbox> is the number used to save and access messages for the user. This is
also used in extensions.conf for directing the call flow to the proper voice-mail
box. The <passwd> parameter is needed when checking messages. <name> is
the name of the user. <email> and <pager> are e-mail addresses that are used
to send message notifications. The pager e-mail has a shorter message,
because it needs to be read on smaller devices (pagers and cell phones). Many
mobile and pager providers have e-mail gateways that can deliver the message
to the device.

Listing 3. Voicemail.conf File

[general]
format=gsm|wav49|wav
serveremail=asterisk
attach=no
maxmessage=180

maxgreet=60

;
; Voicemail box definitions.
; mbox# => password,name,email,pager/mobile
;
[cg1]
111 => 1111,Brett,brett_schwarz@yahoo.com
222 => 2222,Maria,maria@foo.com,4255551212@mob.net

 Defining Extensions

The last file that we examine here is the extensions.conf file (Listing 4). This is
one of the most involved files because it contains the dialplan. The dialplan in
my example is rather simple compared to its capabilities. This file has a general
and global section. The general section is similar to the general section in the
previous files; it defines general parameters. I don't define any general
parameters in this example. The global section is used to define global
variables. These variables can be accessed in the dialplan by using the syntax $
{VARIABLE}. I have defined one variable: TIMEOUT is the answer timeout.
Built-in variables also can be used within the dialplan, such as, CONTEXT, EXTEN
and CALLERID.

Listing 4. extensions.conf File

[globals]
TIMEOUT=12

[misc]
exten => t,1,PlayBack(timeout)
exten => t,2,Hangup()
exten => i,1,PlayBack(invalid)
exten => i,2,Hangup()

; voicemail management
[voicemail]
include => misc
exten => 6245,1,VoiceMailMain2()
exten => 6245,2,Hangup

[iax]
include => misc
exten => 111/222,1,SetCIDName("it's your wife!")
exten => 111/222,2,agi(callerid.agi)
exten => 111/222,3,Dial(IAX/brett/s,${TIMEOUT})
exten => 111/222,4,Voicemail2(111)
exten => 111,1,agi(callerid.agi)
exten => 111,2,Dial(IAX/brett/s,${TIMEOUT})
exten => 111,3,Voicemail2(111)
exten => 222,1,Dial(IAX/maria/s,${TIMEOUT})
exten => 222,2,Voicemail2(222)
exten => maria,1,Goto(iax,222,1)
exten => 333,1,Dial(IAX/niko/s,${TIMEOUT})

[afterhours]
include => misc
exten => _.,1,Wait(1)
exten => _.,2,Answer
exten => _.,3,Background(vm-menu)

exten => 1,1,Voicemail2(111)
exten => 2,1,Voicemail2(222)
exten => 3,1,Voicemail2(333)

[cg1]
include => iax
include => voicemail

[cg2]
include => afterhours|1:00-6:00|*|*|*
include => iax

All of the other sections are context definitions. A context is simply a grouping
of digit patterns. Here I have defined several contexts that define dialing
scenarios: voicemail, iax and afterhours. Think of these as individual or mini-
dialplans. I then define two contexts that I assign to the users. These inherit the
capabilities of the other contexts I already have defined by using the include
keyword.

The first context, voicemail, lists the digit patterns that allow users to access
their voice-mail messages. Users can dial 6245, and the application
VoicemailMain2 prompts them for the mailbox number and password. Users
then can manage (listen to, delete and so on) the messages in their mailbox.

The iax context is used for PBX dialing between IAX users. We have defined
various extensions for each of the users. An entry with the name of the user
(maria) redirects to the extension number entry. For the 111 extension, I also
match on callerid. If the callerid matches, I change the callerid name so it has a
relative meaning. For example, if the extension dialed is 111, and the callerid is
222, the callerid name is changed to “it's your wife!”. This message shows up on
my client whenever my wife calls me (I won't get into how I use this to my
advantage).

The last digit pattern context is used for calls that arrive during late hours.
Because I don't want to be disturbed at night by external users, I match on any
dialed number (_.). It waits for one second and then answers the call. After it
answers, it plays a background message so the caller can choose for which
person to leave a message (“for brett, press 1”). So, if the caller presses 1, the
call proceeds to the 1,1,Voicemail2(111) entry, which sends the user to the 111
mailbox. This is a simple illustration of how you could construct an IVR system.

The [cg1] and [cg2] contexts include functionality I already have defined inside
other contexts. This allows me to create different user groups easily. For
example, [cg1] has all of the capabilities I have defined, but [cg2] has only the
iax capabilities and gets directed to voice mail during late hours. Powerful
dialing capabilities can be constructed by utilizing the flexibility of Asterisk's
dialplan. My example has shown only a glimpse of the possibilities. You also
can simplify the dialplan by using macros, but I leave that as an exercise for the
reader.

 Using AGI

In the extensions.conf file, an entry called callerid.agi calls an AGI script. This is
a simple example illustrating the AGI interface. The script is placed in the /var/
lib/ asterisk/agi-bin/ directory and is invoked by Asterisk as an external process.
AGI and Asterisk communicate through stdin, stdout and stderr. Variables are
passed in to the AGI through stdin, and the AGI can pass information back to
Asterisk through stdout. Messages destined for the Asterisk console are written
to stderr. Two parameters always are passed to the AGI: the full path to the AGI
and the arguments that are passed to the AGI through the exten entry. The AGI
collects the callerid and sends it to a GUI application running on another
machine. The GUI application can be retrieved from my Web site (see Figure 2).
AGI scripts also can be used to retrieve information. If you need to query a
database for information about the call or the user, you can use the AGI
interface as well.

Figure 2. A GUI application shows the caller ID information for incoming calls.

 Making a Call

So, what can we do now? After creating the configuration files above and
starting Asterisk (asterisk -vvvc), we can try some calls. Currently, the
availability of IAX soft clients is limited. SIP soft clients, including kphone and
xten, and hard clients from Cisco, SNOM and other vendors also are available
that will work with Asterisk, but I concentrate on using IAX in this article.
Gnophone (Figure 3) is the oldest client and was developed by Digium. Work
also is being done on a cross-platform client, as well as a Windows client.
Another client is available that belongs to the tel Project at SourceForge. I have
modified the user interface to that client (Figure 4). It is still alpha software, but
it's functional. In fact, I used this client to establish a call between Germany
(Reinhard Max), Australia (Steve Landers) and the US (me). Whichever client you
choose, you need to define your user name, password and context for each
Asterisk server with which you want to connect. Then, you can call anyone
defined in the iax.conf file (if the dialplan is set up correctly). So, if I want to call

https://secure2.linuxjournal.com/ljarchive/LJ/118/6769f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6769f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6769f2.large.jpg

my wife, I simply dial 222, or I can type maria (because I have defined this in
the dialplan). If I want to check my voice-mail messages, I can dial 6245.

Figure 3. Digium's Gnophone is a software phone client you can use with Asterisk.

https://secure2.linuxjournal.com/ljarchive/LJ/118/6769f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6769f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6769f3.large.jpg

Figure 4. Alpha but working software: a modified version of the client from the tel Project.

 Conclusion

I have touched on only a few of Asterisk's capabilities, but this article should
give the reader a glimpse of Asterisk's potential. Asterisk scales well from small
setups to larger and more complex configurations. For example, Asterisk
servers in different locations can be connected through the IAX protocol,
creating a virtual PBX. Because Asterisk runs on Linux you can leverage existing
tools to help interface and manage Asterisk. For instance, you could have Web
access to the CDRs, configuration files and voice mail. In fact, a CGI script comes
with Asterisk that allows you to access your voice-mail messages with a Web
browser. I encourage readers to explore Asterisk further and leverage its
powerful features.

Acknowledgements

I would like to thank Digium, Reinhard Max and Steve Landers for their
assistance with this article.

Resources

AGI Information: home.cogeco.ca/~camstuff/agi.html

“Asterisk: A Bare-Bones VoIP Example”, by John Todd (Asterisk and SIP Setup):
www.onlamp.com/pub/a/onlamp/2003/07/03/asterisk.html

Asterisk Client: tel.sf.net

Asterisk Forum: www.pbxtech.info/forumdisplay.php?f=113

Asterisk HOWTO (Beta): megaglobal.net/docs/asterisk/html

Asterisk Wiki: www.voip-info.org/wiki-Asterisk

Brett's Web Site: www.bschwarz.com

Cross-Platform IAX Client and IAXPhone: iaxclient.sf.net

Digium (Documentation and Hardware): www.digium.com

Getting Started with Asterisk: www.automated.it/guidetoasterisk.htm

Gnophone: www.gnophone.com

http://home.cogeco.ca/~camstuff/agi.html
http://www.onlamp.com/pub/a/onlamp/2003/07/03/asterisk.html
http://tel.sf.net
http://www.pbxtech.info/forumdisplay.php?f=113
http://megaglobal.net/docs/asterisk/html
http://www.voip-info.org/wiki-Asterisk
http://www.bschwarz.com
http://iaxclient.sf.net
http://www.digium.com
http://www.automated.it/guidetoasterisk.htm
http://www.gnophone.com

Notes on Asterisk: asterisk.drunkcoder.com

Perl Modules for Asterisk and Other Information: asterisk.gnuinter.net

Windows IAX Client: laser.com/dante/diax/diax.html

Brett Schwarz lives near Seattle, Washington, with his wife, son and dog.
Although he is familiar with multiple platforms, his platform of choice is Linux.
He has many years of experience working on both computer and telecom
systems. He can be contacted through his home page at www.bschwarz.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://asterisk.drunkcoder.com
http://asterisk.gnuinter.net
http://laser.com/dante/diax/diax.html
http://www.bschwarz.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 A Guided Tour of Ethereal

Brad Hards

Issue #118, February 2004

Learn exactly what's in all those packets flying by on your network with this
essential development and administration tool.

I recently started using a network tool called Ethereal. For those familiar with
tcpdump, think of Ethereal as a GUI form of tcpdump that shows you the whole
packet and can break down the packet to show individual fields. For those who
haven't used tcpdump or similar packet sniffers, it might be best to show the
capabilities of Ethereal through a few examples.

When you start Ethereal, it looks like the graphic shown in Figure 1. Typically,
you want to capture some data from the network attached to your workstation;
do this by selecting Capture→Start..., which brings up the dialog shown in
Figure 2. When you've captured the data you need, stop the capture and
examine it. Figure 3 shows a capture of some IPv6 traffic, where I've selected an
ICMPv6 packet (in the top frame) and expanded the IPv6 and ICMPv6 contents
to select the IPv6 source address (in the middle frame). Ethereal automatically
highlights the raw bytes corresponding to the selected field—in this case,
source address—within the packet in the bottom frame. This type of
functionality makes Ethereal useful for understanding various network
protocols, and I definitely recommend its use as a teaching or self-education
aid in conjunction with networking RFCs. Ethereal also is useful for educating
users and management about the dangers of using protocols that send data in
clear text, as shown for File Transfer Protocol in Figure 4.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f1.large.jpg

Figure 1. The Ethereal Main Window

Figure 2. Capture Dialog

https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f1.large.jpg

Figure 3. ICMPv6 Capture and Dissection

Figure 4. FTP Capture and Dissection, Showing Password

Ethereal also is useful for investigating proprietary protocols or other
networking protocols that are not well documented. Figure 5 shows a
somewhat contrived example—rsync. This protocol is in widespread use
because of its ability to save significant bandwidth but is essentially defined by
the source code to the application. I used Ethereal to capture a number of
rsync transactions and figured out how the protocol works—at least enough to

https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f4.large.jpg

write an rsync protocol dissector for Ethereal. I understand the Samba team
uses Ethereal and a number of other tools to develop clients and servers that
interoperate with the Microsoft CIFS implementations, because the Microsoft
documentation for these protocols is incomplete or incorrect.

Figure 5. Ethereal Capturing rsync (Now Supported)

I also have used Ethereal as a part of network application testing (on zcip and
Service Location Protocol) to assess correctness and response times. Ethereal
time-tags each transaction, so you easily can see the relationship between
packets.

 How Ethereal Works

Ethereal works by capturing packets through a reasonably portable library
called libpcap, which on Linux accesses the packets on the network through
using a kernel mechanism called packet socket. It is possible to disable this
option under Linux, although probably all vendor kernels have it enabled, and it
is enabled in the default kernel configuration for most architectures on Linux
kernels. Other operating systems have different interfaces, but libpcap
abstracts this away and provides a common API.

Having received a copy of the network packets, Ethereal builds an internal
linked list and saves the packets to a file. It then determines what protocol the
packet is carrying based on the port numbers, type fields in the supporting
protocols or a heuristic that guesses the protocol based on the contents of the
field. It is worth noting that this approach essentially is informed guesswork

https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f5.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f5.large.jpg

and is by no means infallible. For example, traffic to port 53 probably is DNS,
but there is no reason why a network administrator could not choose to run
another service on that port. In addition, Ethereal supports an option to
interpret a particular packet as a different protocol, using Tools→Decode As.

Based on the guessed protocol, Ethereal decodes (dissects, in Ethereal
nomenclature) the packet. Each protocol supported by Ethereal is handled
through a bit of code known as a dissector. At the time of this writing, 333
dissectors are built in to Ethereal, some of which handle more than one
protocol. Protocols also can be provided as plugins, which are loaded
dynamically. Depending on the protocol and the level of sophistication
provided by the dissector code, the packets can be broken down for analysis of
individual bits or they can be presented at a very high level. Both options are
depicted in Figure 6, where the TCP dissector shows the individual bits set in
the flags, but the IMAP dissector breaks out only two fields. It is worth noting
that IMAP is a text-based protocol, so a simple ASCII dump of the packet
contents is an appropriate way to show them.

Figure 6. Two Variations on Dissection—TCP and IMAP

 Key Features

From my point of view, the key features of Ethereal are its ability to capture and
analyze network traffic within a single application and the sophistication of its
display and filtering code.

https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f6.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f6.large.jpg

Although we looked earlier in this article at how capturing network traffic is
done, Ethereal can capture more than Ethernet traffic. Ethereal typically can (at
least on Linux) capture data from Ethernet, Token-Ring, FDDI, serial (PPP and
SLIP), 802.11 wireless LAN, ATM connections and all networking devices at the
same time. Called the “any” device in the Ethereal capture dialog, this feature
only works in Linux. Of course, suitable networking hardware and kernel
drivers need to be enabled to get the packets.

On a busy network, you may have thousands of packets in a capture file and be
interested in only some of them. To make it easier to interpret the Ethereal
display, which can get pretty busy, you can use colors. From the
Display→Colorize Display... option, you can select display packets in various
colors; Figure 7 shows how the filter is specified. In this case, I'm filtering on
only a single field (the version number for Service Location Protocol), but you
can build sophisticated filters with Boolean logic. Figure 8 shows a typical
example with a few filters, and Figure 9 shows the working display (with Service
Location Protocol Version 2 in red, DNS in green and ARP in blue). You can use
a wide range of text colors as well as background coloring to separate out the
various protocols.

Figure 7. Specifying an Ethereal Color Filter

https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f8.large.jpg

Figure 8. Ethereal Supports Multiple Color Filters

Figure 9. A Typical Colorized Capture Session

After coloring the display, the next step is to remove packets of no interest, a
task Ethereal handles through display filtering. A simple example is shown in
Figure 10, where adding a srvloc filter (in the bottom left of the window) has
removed all the other protocols, leaving only the Service Location Protocol. If
this still is too complex, you could choose to change the coloring again, this
time showing packets from particular hosts in separate colors or packets
containing particular types of client requests or server responses in particular
colors.

https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f8.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f9.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f9.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f9.large.jpg

Figure 10. Display Filtering on Same Session as Shown in Figure 9

Another option is to not capture the unwanted packets in the first place. To do
this, Ethereal supports the same capture filter syntax that tcpdump uses. An
example of this syntax is shown in Figure 11, where the dialog captures only
the packets going to or from the machine with IP 192.168.0.1. Unfortunately,
the syntax used in capture filters is different from that used in the display
filters, a fact that makes capture filtering much less accessible to occasional
users.

Figure 11. Capture Filtering Dialog

https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f10.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f10.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f10.large.jpg

Another feature that some people find useful is the Follow TCP Stream... tool,
which presents a text representation of the conversation. I personally don't use
this feature often, but it is a powerful tool for looking at text-based protocols
such as IMAP (Figure 12).

Figure 12. Following a TCP Stream—IMAP

 Misfeatures and Omissions

Apart from the different syntaxes required for capturing and displaying filters,
I've come across a few other issues in the time I've been using Ethereal. Some
of these have to do with personal preferences, and others have been gleaned
from monitoring the Ethereal mailing lists.

At the time of this writing, my biggest issue is with the quality of the support
documentation, especially the User's Guide, which is incomplete and outdated.
Also, a significant amount of the User's Guide, about the last 80%, is generated
automatically and is not user-friendly. In addition, the version on the Web site
has not been regenerated in some time. I personally found the GUI a little
difficult to get used to, although as I became more familiar with the various
menus, I became more productive with Ethereal. Perhaps some better
documentation would have helped with this. There is also limited developer
documentation, although I see this as a less important issue, given the large
number of examples from which you can work.

https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f12.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f12.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/6842f12.large.jpg

Various users occasionally ask “when will such and such a protocol be
supported?” Where I have found a few protocols not supported by Ethereal
(rsync, distcc and ACAP), I've generally needed to code support myself. This is
fairly easy to do with Ethereal. If you need support for a particular protocol,
however, and it is not supported by Ethereal at the moment, you should allow
for some development effort (either as an in-house development or on a
contract basis) before committing to Ethereal. If you do develop additional
dissectors or enhance an existing one, I strongly recommend that you have it
incorporated into the Ethereal source tree to ensure it remains up to date.

Another feature supported by other packet analysis tools is the ability to
capture data on a remote host and display it locally. If you can run Ethereal on
the remote host, this scenario is possible, but often you want to capture data
on a machine acting as a router or a server, where a full-blown X environment
is undesirable. This lack may be overcome in a future version or it may not be
particularly important, depending on your environment.

The only other issue worth mentioning is that a substantial number of the
queries on the user-support mailing list seem to be from Windows users
experiencing a wide range of problems. I personally haven't run the Windows
version, so I don't know if the difficulties are associated with the underlying
tools (especially WinPcap), Windows itself or the skill levels of the users.

Resources

For more information on Ethereal, start with www.ethereal.com. This page
includes links to the Ethereal manual, downloads and mailing lists.

To understand better what Ethereal is showing you, you need the appropriate
documentation on the network protocol. Those protocols, codified by the
Internet Engineering Task Force, are available at www.rfc-editor.org.

rsync is an efficient network file transfer application originally developed by
Andrew Tridgell (of Samba fame). See rsync.samba.org.

zcip is a tool for automatic assignment (zeroconf) of IPv4 addresses, without
needing a DHCP server. See zeroconf.sourceforge.net.

Service Location Protocol is a way for clients to find servers in a network-
efficient way. See www.srvloc.org for more details on the protocol, or refer to
RFC 2608, RFC 2609, RFC 2610 and RFC 2614, available from www.rfc-editor.org.
A free implementation, mainly developed by Matt Peterson, is available at
www.openslp.org.

http://www.ethereal.com
http://www.rfc-editor.org
http://rsync.samba.org
http://zeroconf.sourceforge.net
http://www.srvloc.org
http://www.rfc-editor.org
http://www.openslp.org

The capturing capabilities of Ethereal depend on libpcap, developed by the
TCPDUMP Group. You need libpcap to build Ethereal, although most
distributions ship with libpcap packages. See www.tcpdump.org.

The Windows version of libpcap is WinPcap. See winpcap.polito.it for more
information and to download the installer package.

IMAP (Internet Message Access Protocol) is a server-based e-mail protocol, in
many ways superior to the Post Office Protocol (POP) that is widely used. For
more details, get RFC 2060 from www.rfc-editor.org.

distcc is a distributed compilation application developed by Martin Pool that
uses various network machines to participate in building C code. See
distcc.samba.org.

Brad Hards is the technical director for Sigma Bravo, a small professional
services company in Canberra, Australia. In addition to Linux, his technical foci
include aircraft system integration and certification, GPS and electronic
warfare. Comments on this article may be sent to bradh@frogmouth.net.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.tcpdump.org
http://winpcap.polito.it
http://www.rfc-editor.org
http://distcc.samba.org
mailto:bradh@frogmouth.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 LinuxBIOS at Four

Ronald G. Minnich

Issue #118, February 2004

LinuxBIOS is more than a way to boot your Linux box in a few seconds. The new
in-demand software for Linux cluster sites also offers a fallback mode that can
save your system if a power failure strikes during a BIOS upgrade.

LinuxBIOS is a GPLed program that replaces the BIOS found on many
computers, including AMD64, x86, Alpha and PowerPC systems. LinuxBIOS is a
vendor-independent, architecture-neutral BIOS, more than 95% of which is
written in C. LinuxBIOS is four years old. Some of the largest Linux clusters in
the world use LinuxBIOS, and some of the smallest embedded systems in the
world do too. LinuxBIOS has been used in robots searching for survivors in the
World Trade Center, as well as robots used in Afghanistan and Iraq. LinuxBIOS
is supported by many vendors, including AMD and Tyan. It now is possible, for
example, to order LinuxBIOS motherboards from Tyan.

In this article I describe the basic structure of LinuxBIOS, the origins of
LinuxBIOS and how it evolved to its current state. I also cover the platforms it
supports and the lessons we have learned about trying to marry a GPL project
to some of the lowest-level, most heavily guarded secrets that vendors possess.

 LinuxBIOS Structure

Before we can explain LinuxBIOS structure we need to provide a quick overview
of modern PC architectures. PCs consist of a set of chips, including the CPU,
graphics and keyboard controller, all connected by buses. A bus is a set of one
or more wires that can be used to interconnect two or more chips. Some buses
have two wires, signal and ground, and other buses have tens or hundreds of
wires.

A highly simplified diagram of PC architecture is shown in Figure 1. The
different types of buses cannot be wired to one another directly, so chips
known as bridges are used to connect one bus to another. The first bus is the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

front-side bus, and on most PCs it connects CPUs to one another and to the
north bridge. The north bridge connects CPUs to both the memory bus and the
PCI bus. In our diagram we show only one north bridge, but there are many
variations on this theme. The AMD Opteron, for example, uses a north bridge
for each CPU, and the front-side bus connects only each Opteron CPU to its
own north bridge. In other words, there is no shared front-side bus on the
Opteron. Nevertheless, the north bridge is an identifiable device in the Opteron
chipset.

The south bridge, which almost always resides on PCI bus 0, is the next bridge
in line. The south bridge interfaces from the PCI bus to legacy devices, namely
the set of devices found on PCs ca. 1981. The south bridge also drives the BIOS
Flash part.

https://secure2.linuxjournal.com/ljarchive/LJ/118/7170f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7170f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7170f1.large.jpg

Figure 1. A simplified view of a basic PC architecture. Bridges are chips that connect one bus
to another.

When the PC is turned on or reset, the CPUs start fetching from a known
address, which traditionally has been from the top of memory (TOM) minus 16
bytes. In the original 8086, this was address 0xffff0; on newer PCs, it is address
0xfffffff0. This initial instruction fetch has to be supported by the hardware
somehow, even before it has been configured. A lot of the hardware has to
work for that first instruction fetch.

Nevertheless, when first turned on the PC hardly is ready to run C code and
barely is ready to run assembly code. The motherboard has to be brought to
life in stages. As a result, LinuxBIOS has a sequence of bootstraps, each
bootstrap being invoked when additional CPU resources are activated. Each
bootstrap assumes that certain resources have been enabled and that the
machine has a well-defined set of resources available.

These LinuxBIOS pieces are:

• The first 10 or 15 instructions that enable the CPU, enable a minimal
virtual memory capability (at minimum, 32-bit addresses) and enable
other resources needed to turn on memory (such as the I2C bus). They
also set the internal CPU state to clean up things, such as instruction
pipelines.

• Memory startup code, which requires a sane CPU and a working I2C bus
for interrogating memory parameters.

• Code that loads object code originally written in C from Flash to memory.
The object code optionally can be compressed.

• Code that can be run once memory is working. This code scans all the
hardware resources and initializes them.

• One or more payloads that perform any custom final configuration work
and boot an OS.

We show all the phases in Figure 2.

https://secure2.linuxjournal.com/ljarchive/LJ/118/7170f2.large.jpg

Figure 2. Phases of LinuxBIOS

LinuxBIOS supports an optional fallback BIOS in the event of BIOS problems.
The fallback support is built in to the BIOS when it is compiled. Additional code
checks flags in the CMOS and determines whether the CMOS is corrupted,
whether the previous BIOS failed to start correctly or whether the user wishes
to boot in to the fallback CMOS. The fallback BIOS is a complete LinuxBIOS
image, and its capabilities are not limited in any way.

The fallback capability is useful for unattended BIOS updates. Consider the case
of updating the BIOS on 1,024 or more nodes—what if it fails halfway through?
For most systems, you now have a very expensive, very heavy paperweight.
With LinuxBIOS, one simply resets the nodes and they come back up
automatically in fallback mode.

https://secure2.linuxjournal.com/ljarchive/LJ/118/7170f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7170f2.large.jpg

 Origins and Evolution of LinuxBIOS

I started the LinuxBIOS Project at Los Alamos National Lab (LANL) in September
1999. For the prior eight years, I had been building clusters of all kinds and had
built my first PC cluster in 1994. In all this time, the BIOS had been a stumbling
block in constructing larger clusters.

In 1997, I built the 144-node Cyclone cluster at the Sarnoff Corporation. As an
experiment, we had only 16 nodes with video. The experiment was not
successful; PCs using the standard BIOS simply are too unreliable to have the
video removed, because PC failure recovery always requires interaction with
the BIOS. It was clear that if we were to move to ever-larger PC clusters, we
needed to resolve the problems of the BIOS.

We decided the ideal PC cluster node would have the following capabilities:
boots directly into an OS from some onboard, nonvolatile RAM; configures all
the network interfaces but configures no other hardware; connects to a control
node using any working network interface; and takes action only at the
direction of the control node.

Private industry was not the place to move on this kind of work, however, so we
never were able to take these ideas past the talking stage.

Once I got to LANL, I had the ability to pursue these ideas. Several technology
trends also made 1999 a far better year than 1997 to look at this problem. In
1999, motherboards with 1MB of Flash were appearing, and the self-describing
PCI bus had replaced the older EISA and ISA buses completely. Also important,
Linux was becoming much better at doing more configuration, as exemplified
by the SGI Visual Workstation, which didn't even have a standard BIOS.

It seemed clear that if we could put Linux in the BIOS part, we could achieve our
goals. Linux can do a far better job of running the hardware than any BIOS we
have seen. What we needed was a simple hardware bootstrap that loaded
Linux from Flash into memory; Linux would do the rest. Hence, our early motto,
“Let Linux do it!”

Before we got the LinuxBIOS Project going full steam, we needed to ensure that
Linux could be used as an OS bootstrap, which meant that Linux had to be able
to boot Linux. By December 1999, we had demonstrated Linux booting Linux
with the LOBOS work.

The easiest way to get work done in an Open Source world is to let somebody
else do it for you, so the next step in LinuxBIOS was to look for somebody else's
software. James Hendricks and Dale Webster found such a system in the
OpenBIOS Project. In the space of five days, starting with the OpenBIOS source,

they wrote and built a test system on our Intel L440GX+ motherboards that
could boot the system from reset—not power on, but reset. Starting from
power on would take another five months to figure out, but it wasn't bad work
for five vacation days.

We realized early on that assembly code could not be the future of LinuxBIOS.
OpenBIOS was a lot of assembly code, with a difficult-to-master build structure.
Our small community began a search for a better foundation for LinuxBIOS. Jeff
Garzik found a new BIOS and learned that STPC, which had written it, was
willing to open source it. The STPC BIOS became the code base for the new
LinuxBIOS. The STPC code required substantial reorganization so it could
support multiple motherboards and chipsets, but it did provide a good starting
point.

The next six months were spent getting a few platforms to run LinuxBIOS. Our
first non-graphical platform was an Intel L440GX+ motherboard, followed by an
SiS 630 motherboard. With the SiS, we got our first corporate involvement. SiS
supplied data books, schematics, assembly code and technical support, all
aimed at getting LinuxBIOS running on its platform.

We learned what Linux could and could not do. At the time, we were working
with kernel version 2.2. We learned that Linux could not configure a PCI bus
from scratch—LinuxBIOS had to do that. We were able to take the PCI code
from Linux and, with modifications, use it directly in LinuxBIOS, while adding
the extensions we needed for true PCI configuration. We learned that
LinuxBIOS came up so fast, the IDE drives were not spun up. We continue to
support a patch for Linux to work around this problem. These and a host of
other lessons required some unexpected changes in our “Let Linux do it!”
philosophy.

By the nine-month mark, we had LinuxBIOS working well on two platforms,
written mostly in C, and we had the beginnings of corporate interest. VIA and
Acer contributed data books that allowed us to port to their new chipsets. That
summer James Hendricks began work on SMP support, and in “Let Linux do it!”
mode, that support was written as patches to the Linux kernel, not as
extensions to LinuxBIOS. At one point, with our patches, a Linux kernel could
come up as a uniprocessor and enable the additional processors from scratch
—something that heretofore only the BIOSes knew how to do.

That summer, Linux NetworX joined the effort, and to our good fortune, Eric
Biederman got involved. Eric's most important early work was the Alpha port.
Eric also cleaned up the memory startup code significantly. Our collaboration
continues to this day; Linux NetworX is the largest reseller of LinuxBIOS-based

systems, and Eric has spearheaded the creation and architecture of version 2 of
LinuxBIOS.

That fall, we presented talks at Atlanta Linux Showcase 2000, and while there
met Steve James from Linux Labs. This partnership allowed us, in the space of
less than a month, to realize our dream: we built a 13-node LinuxBIOS-based
cluster for Supercomputing 2000. The cluster booted to full operational status
in about 13 seconds.

By 2001, Linux NetworX had completed the Alpha port for the DS10. We then
built a cluster with 104 DS10s, all running LinuxBIOS. The DS10 booted more
slowly than the Pentium systems, so it took this cluster 50 or so seconds to
come to full operational status, a speed that still was quite acceptable. We were
used to BIOSes that took 50 seconds simply to test memory.

The Alpha port demonstrated that LinuxBIOS was portable. Little if any of the
code changed, and yet LinuxBIOS worked fine as a 64-bit BIOS or as a 32-bit
BIOS.

Since 2001, we have added developers (there are now 11) and continued to
port to more platforms, the most recent being the AMD Opteron. We
envisioned LinuxBIOS as purely for clusters, but now non-cluster use far
outstrips LinuxBIOS use in clusters. We thought Linux could do everything hard;
LinuxBIOS does a lot now, including SMP startup. We would have preferred to
“Let Linux do it”, but the design of the AMD K7 SMP hardware requires that SMP
startup be done in the BIOS.

We thought vendors would jump in. It has taken four years, but in this fifth year
of LinuxBIOS development, we now are finding some of the largest computer
vendors in the world expressing interest. We simply were a little optimistic on
the time frame. Once vendors see the business case, however, they get
involved. Vendors sold at least $30 million US worth of LinuxBIOS-based
systems in 2003, up from $0 million in 2000.

 Platforms

LinuxBIOS runs on a wide range of platforms. Fifty supported motherboards
are in the source tree, but we have found that many motherboards are so
similar that a LinuxBIOS for one motherboard can work on another. Companies
build code for one motherboard, run it on another motherboard and do not
always get around to telling us.

LinuxBIOS works on 64-bit and 32-bit CPUs. CPUs supported include the Alpha,
K8, K7, PowerPC, P4, PIII, PII, Cyrix (VIA), Geode (now AMD) and SC520 (AMD).
Chipsets are too numerous to list. Form factors of mainboards range from the

smallest PC/104 systems to the largest K8 systems. An IBM PPC 970 port is in
progress.

 Chipset Secrets

One of the most common phrases we heard from chip vendors in the first few
years was “we'll never tell you that.” “That” being CPU information, chipset
information, motherboard information or any combination of the three. The
designs for these three systems constitute highly guarded secrets. It seems
amazing, even now, that vendors are able to let us build a GPLed BIOS that by
its nature exposes some of these secrets.

How was it possible for us to get this type of information? Simple, businesses
are not charities. If there is no business case for releasing this information to
us, they do not do it. If, however, there is a business case, then it happens—
sometimes with astonishing speed.

From what we can see, the two factors in our success were competition and the
creation of a market. Competition gave us a wide variety of choices as to
motherboard, chipset and CPU. Once there was a reasonable market, vendors
were concerned about being left out.

The experience at LANL is revealing. LANL's last two large cluster RFPs have
specified LinuxBIOS as a mandatory requirement. Spending on these RFPs has
come in at over $19 million US. Companies that had decided not to become
involved in LinuxBIOS could not respond to these RFPs. Companies that had
the foresight to get involved in LinuxBIOS early in the game were equipped to
respond. Foresight, in this case, conferred a competitive advantage.

 Conclusions

LinuxBIOS has come a long way in four years—as one person put it, from “I'm
Possible” to “In Production”. LinuxBIOS is used on everything from the largest
Linux clusters yet built to the small—test instruments, MP3 players and
portable clusters.

LinuxBIOS makes it possible to build systems without PC hardware baggage.
The systems can be optimized for Linux and thus can be more compact and
simpler. There is increasingly a business case for such systems.

LinuxBIOS is now in its second version, with four years, at least six CPUs and
over 50 motherboards' worth of experience behind it. It now takes only days in
some cases to do a port to a new system; originally, it took months. LinuxBIOS'
impact on the world of computing is only beginning.

 Acknowledgements

So many people have contributed to LinuxBIOS that it is easy to slight them by
listing some and not all. Nevertheless, a few contributors stand out as having
made LinuxBIOS possible. First, of course, is Stefan Reinauer and the OpenBIOS
effort; Jeff Garzik, who got the STPC BIOS Project set up on SourceForge as
FreeBIOS; Ollie Lho, who did so much to get our first workstation platforms
going in 2000; Steve James and Linux Labs, who worked with us and expedited
the shipment in 2000 of our first LinuxBIOS cluster; Greg Watson, who did the
PowerPC port; and Eric Biederman, who has done so much to get our really
hard platforms up and stable and who has done so much to create version 2.

This paper is released under LAUR 03-8165. This research was funded by the
Mathematical Information and Computer Sciences (MICS) Program of the DOE
Office of Science and the Los Alamos Computer Science Institute (ASCI). Los
Alamos National Laboratory is operated by the University of California for the
National Nuclear Security Administration of the United States Department of
Energy under contract W-7404-ENG-36.

Ronald G. Minnich has been working in high-performance computing and
clustering for 15 years. He recently realized that one of his first clusters, a 16-
node SPARC cluster, has a total power equivalent to one-fourth of one of the
2,048 processors in his newest cluster; his new cluster has 10,000 times the
power of his first one. Ron started working with UNIX in 1976, with Linux in
1993 and built his first PC cluster in 1994.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

I2C Drivers, Part II

Greg Kroah-Hartman

Issue #118, February 2004

Here's what has to happen to read the sensors that report the temperature, fan
speed and other important system health information.

In my last column [LJ, December 2003], we discussed how I2C bus drivers and
I2C algorithm drivers work. We also described how to make a tiny dummy I2C
bus driver. This month, we discuss how an I2C chip driver works and provide an
example of one in action.

An I2C chip driver controls the process of talking to an individual I2C device that
lives on an I2C bus. I2C chip devices usually monitor a number of different
physical devices on a motherboard, such as the different fan speeds,
temperature values and voltages.

The struct i2c_driver structure describes a I2C chip driver. This structure is
defined in the include/linux/i2c.h file. Only the following fields are necessary to
create a working chip driver:

• struct module *owner; — set to the value THIS_MODULE that allows the
proper module reference counting.

• char name[I2C_NAME_SIZE]; — set to a descriptive name of the I2C chip
driver. This value shows up in the sysfs file name created for every I2C
chip device.

• unsigned int flags; — set to the value I2C_DF_NOTIFY in order for the chip
driver to be notified of any new I2C devices loaded after this driver is
loaded. This field probably will go away soon, as almost all drivers set this
field.

• int (*attach_adapter)(struct i2c_adapter *); — called whenever a new I2C
bus driver is loaded in the system. This function is described in more
detail below.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• int (*detach_client)(struct i2c_client *); — called when the i2c_client device
is to be removed from the system. More information about this function is
provided below.

The following code is from an example I2C chip driver called tiny_i2c_chip.c.,
which is available from the Linux Journal FTP site [ftp.linuxjournal.com/pub/lj/
listings/issue118/7252.tgz]. It shows how the struct i2c_driver structure is set
up:

static struct i2c_driver chip_driver = {
 .owner = THIS_MODULE,
 .name = "tiny_chip",
 .flags = I2C_DF_NOTIFY,
 .attach_adapter = chip_attach_adapter,
 .detach_client = chip_detach_client,
};

Registering a Chip Driver

To register this I2C chip driver, the function i2c_add_driver should be called
with a pointer to the struct i2c_driver:

static int __init tiny_init(void)
{
 return i2c_add_driver(&chip_driver);
}

To unregister the I2C chip driver, the i2c_del_driver function should be called
with the same pointer to the struct i2c_driver:

static void __exit tiny_exit(void)
{
 i2c_del_driver(&chip_driver);
}

After the I2C chip driver is registered, the attach_adapter function callback is
called when an I2C bus driver is loaded. This function checks to see if any I2C
devices are on this I2C bus to which the client driver wants to attach. Almost all
I2C chip drivers call the core I2C function i2c_detect to determine this. For
example, the tiny_i2c_chip.c driver does this:

static int
chip_attach_adapter(struct i2c_adapter *adapter)
{
 return i2c_detect(adapter, &addr_data,
 chip_detect);
}

https://secure2.linuxjournal.com/ljarchive/LJ/listings/118/7252.tgz
https://secure2.linuxjournal.com/ljarchive/LJ/listings/118/7252.tgz

The i2c_detect function probes the I2C adapter, looking for the different
addresses specified in the addr_data structure. If a device is found, the
chip_detect function then is called.

If you look closely at the source code, you cannot find the addr_data structure
anywhere. The reason for this is it is created by the SENSORS_INSMOD_1
macro. This macro is defined in the include/linux/i2c-sensor.h file and is quite
complicated. It sets up a static variable called addr_data based on the number
of different types of chips that this driver supports and the addresses at which
these chips typically are present. It then provides the ability to override these
values by using module parameters. An I2C chip driver must provide the
variables normal_i2c, normal_i2c_range, normal_isa and normal_isa_range.
These variables define the i2c smbus and i2c isa addresses this chip driver
supports. They are an array of addresses, all terminated by either the special
value I2C_CLIENT_END or I2C_CLIENT_ISA_END. Usually a specific type of I2C
chip shows up in only a limited range of addresses. The tiny_i2c_client.c driver
defines these variables as:

static unsigned short normal_i2c[] =
 { I2C_CLIENT_END };
static unsigned short normal_i2c_range[] =
 { 0x00, 0xff, I2C_CLIENT_END };
static unsigned int normal_isa[] =
 { I2C_CLIENT_ISA_END };
static unsigned int normal_isa_range[] =
 { I2C_CLIENT_ISA_END };

The normal_i2c_range variable specifies that we can find this chip device at any
I2C smbus address. This allows us to test this driver on almost any I2C bus
driver.

What to Do When the Chip Is Found

In the tiny_i2c_chip.c driver, when an I2C chip device is found, the function
chip_detect is called by the I2C core. This function is declared with the following
parameters:

static int
chip_detect(struct i2c_adapter *adapter,
 int address, int kind);

The adapter variable is the I2C adapter structure on which this chip is located.
The address variable contains the address where the chip was found, and the
kind variable indicates what kind of chip was found. The kind variable usually is
ignored, but some I2C chip drivers support different kinds of I2C chips, so this
variable can be used to determine the type of chip present.

This function is responsible for creating a struct i2c_client structure that then is
registered with the I2C core. The I2C core uses that structure as an individual
I2C chip device. To create this structure, the chip_detect function does the
following:

struct i2c_client *new_client = NULL;
struct chip_data *data = NULL;
int err = 0;

new_client = kmalloc(sizeof(*new_client),
 GFP_KERNEL);
if (!new_client) {
 err = -ENOMEM;
 goto error;
}
memset(new_client, 0x00, sizeof(*new_client));

data = kmalloc(sizeof(*data), GFP_KERNEL);
if (!data) {
 err = -ENOMEM;
 goto error;
}
memset(data, 0x00, sizeof(*data));

i2c_set_clientdata(new_client, data);
new_client->addr = address;
new_client->adapter = adapter;
new_client->driver = &chip_driver;
new_client->flags = 0;
strncpy(new_client->name, "tiny_chip",
 I2C_NAME_SIZE);

First, the struct i2c_client structure and a separate local data structure (called
struct chip_data) are created and initialized to zero. It is important that the
i2c_client structure is initialized to zero, as the lower levels of the kernel driver
core require this in order to work properly. After the memory is allocated
successfully, some fields in the struct i2c_client are set to point to this specific
device and this specific driver. Notably, the addr, adapter and driver variables
must be initialized. The name of the struct i2c_client also must be set if it is to
show up properly in the sysfs tree for this I2C device.

After the struct i2c_client structure is initialized, it must be registered with the
I2C core. This is done with a call to the i2c_attach_client function:

/* Tell the I2C layer a new client has arrived */
err = i2c_attach_client(new_client);
if (err)
 goto error;

When this function returns, with no errors reported, the I2C chip device is set
up properly in the kernel.

I2C and sysfs

In the 2.0, 2.2 and 2.4 kernels, the I2C code would place the I2C chip devices in
the /proc/bus/i2c directory. In the 2.6 kernel, all I2C chip devices and adapters
show up in the sysfs filesystem. I2C chip devices can be found at /sys/bus/i2c/
devices, listed by their adapter address and chip address. For example, the
tiny_i2c_chip driver loaded on a machine might produce the following sysfs tree
structure:

$ tree /sys/bus/i2c/
/sys/bus/i2c/
|-- devices
| |-- 0-0009 -> ../../../devices/pci0000:00/0000:00:06.0/i2c-0/0-0009
| |-- 0-000a -> ../../../devices/pci0000:00/0000:00:06.0/i2c-0/0-000a
| |-- 0-000b -> ../../../devices/pci0000:00/0000:00:06.0/i2c-0/0-000b
| `-- 0-0019 -> ../../../devices/pci0000:00/0000:00:06.0/i2c-0/0-0019
`-- drivers
 |-- i2c_adapter
 `-- tiny_chip
 |-- 0-0009 -> ../../../../devices/pci0000:00/0000:00:06.0/i2c-0/0-0009
 |-- 0-000a -> ../../../../devices/pci0000:00/0000:00:06.0/i2c-0/0-000a
 |-- 0-000b -> ../../../../devices/pci0000:00/0000:00:06.0/i2c-0/0-000b
 `-- 0-0019 -> ../../../../devices/pci0000:00/0000:00:06.0/i2c-0/0-0019

This shows four different I2C chip devices, all controlled by the same tiny_chip
driver. The controlling driver can be located by looking at the devices in the /
sys/bus/i2c/drivers directory or by looking in the directory of the chip device
itself and reading the name file:

$ cat /sys/devices/pci0000\:00/0000\:00\:06.0/i2c-0/0-0009/name
tiny_chip

All I2C chip drivers export the different sensor values through sysfs files within
the I2C chip device directory. These filenames are standardized, along with the
units in which the values are expressed, and are documented within the kernel
tree in the file Documentation/i2c/sysfs-interface (Table 1).

Table 1. Sensor Values Exported through sysfs Files

temp_max[1-3]
Temperature max value. Fixed point value in form

XXXXX and should be divided by 1,000 to get degrees
Celsius. Read/Write value.

As the information in Table 1 shows, there is only one value per file. All files are
readable and some can be written to by users with the proper privileges.

The tiny_i2c_chip.c driver emulates an I2C chip device that can report
temperature values. It creates the files, temp_max1, temp_min1 and
temp_input1 in sysfs. The values it returns when these files are read from is
incremented every time the file is read to show how to access different unique
chip values.

In order to create a file in sysfs, the DEVICE_ATTR macro is used:

static DEVICE_ATTR(temp_max, S_IWUSR | S_IRUGO,
 show_temp_max, set_temp_max);
static DEVICE_ATTR(temp_min, S_IWUSR | S_IRUGO,
 show_temp_hyst, set_temp_hyst);
static DEVICE_ATTR(temp_input, S_IRUGO,
 show_temp_input, NULL);

This macro creates a structure that then is passed to the function
device_create_file at the end of the chip_detect function:

/* Register sysfs files */
device_create_file(&new_client->dev,
 &dev_attr_temp_max);
device_create_file(&new_client->dev,
 &dev_attr_temp_min);
device_create_file(&new_client->dev,
 &dev_attr_temp_input);

That call creates the sysfs files for the device:

/sys/devices/pci0000:00/0000:00:06.0/i2c-0/0-0009
|-- detach_state
|-- name
|-- power
| `-- state
|-- temp_input
|-- temp_max
`-- temp_min

temp_min[1-3]

Temperature min or hysteresis value. Fixed point value
in form XXXXX and should be divided by 1,000 to get
degrees Celsius. This is preferably a hysteresis value,

reported as an absolute temperature, not a delta from
the max value. Read/Write value.

temp_input[1-3] Temperature input value. Read-only value.

The file name is created by the I2C core, and the files detach_state and power/
state are created by the driver core.

But, let's go back to the DEVICE_ATTR macro. That macro wants to know the
name of the file to be created, the mode of the file to be created, the name of
the function to be called when the file is read from and the name of the
function to be called when the file is written to. For the file temp_max, this
declaration was:

static DEVICE_ATTR(temp_max, S_IWUSR | S_IRUGO,
 show_temp_max, set_temp_max);

The function called when the file is read from is show_temp_max. This is
defined, as are many sysfs files, with another macro that creates a function:

#define show(value) \
static ssize_t \
show_##value(struct device *dev, char *buf) \
{ \
 struct i2c_client *client = to_i2c_client(dev);\
 struct chip_data *data = \
 i2c_get_clientdata(client); \
 \
 chip_update_client(client); \
 return sprintf(buf, "%d\n", data->value); \
}
show(temp_max);
show(temp_hyst);
show(temp_input);

The reason this function is created with a macro is that it is quite simple to
create other sysfs files that do almost the same thing, with different names and
that read from different variables, without having to duplicate code. This single
macro creates three different functions to read from three different variables
from the struct chip_data structure.

In this function, the struct device * is converted into a struct i2c_client *. Then
the private struct chip_data * is obtained from the struct i2c_client *. After that
the chip data is updated with a call to chip_update_client. From there, the
variable that has been asked for is printed into a buffer and returned to the
driver core, which then returns it to the user:

$ cat /sys/devices/pci0000:00/0000:00:06.0/i2c-0/0-0009/temp_input
1

The chip_update_client increments all values by one every time it is called:

static void

chip_update_client(struct i2c_client *client)
{
 struct chip_data *data =
 i2c_get_clientdata(client);

 down(&data->update_lock);
 dev_dbg(&client->dev, "%s\n", __FUNCTION__);
 ++data->temp_input;
 ++data->temp_max;
 ++data->temp_hyst;
 data->last_updated = jiffies;
 data->valid = 1;
 up(&data->update_lock);
}

So, all subsequent requests for this value are different:

$ cat /sys/devices/pci0000:00/0000:00:06.0/i2c-0/0-0009/temp_input
2
$ cat /sys/devices/pci0000:00/0000:00:06.0/i2c-0/0-0009/temp_input
3

The set_temp_max function also is created from a macro to allow variables to
be written to:

#define set(value, reg) \
static ssize_t \
set_##value(struct device *dev, \
 const char *buf, size_t count) \
{ \
 struct i2c_client *client = to_i2c_client(dev);\
 struct chip_data *data = \
 i2c_get_clientdata(client); \
 int temp = simple_strtoul(buf, NULL, 10); \
 \
 down(&data->update_lock); \
 data->value = temp; \
 up(&data->update_lock); \
 return count; \
}
set(temp_max, REG_TEMP_OS);
set(temp_hyst, REG_TEMP_HYST);

Just like the show functions, this function converts the struct device * to a struct
i2c_client *, and then the private struct chip_data * is found. The data the user
provides then is turned into a number with a call to simple_strtoul and is saved
into the proper variable:

$ cat /sys/devices/pci0000:00/0000:00:06.0/i2c-0/0-0009/temp_max
1
$ echo 41 > /sys/devices/pci0000:00/0000:00:06.0/i2c-0/0-0009/temp_max
$ cat /sys/devices/pci0000:00/0000:00:06.0/i2c-0/0-0009/temp_max
42

Cleaning Up

When the I2C chip device is removed from the system, either by the I2C bus
driver being unloaded or by the I2C chip driver being unloaded, the I2C core
calls the detatch_client function specified in the struct i2c_driver structure. This
usually is a simple function, as can be seen in the example driver's
implementation:

static int chip_detach_client(struct i2c_client *client)
{
 struct chip_data *data = i2c_get_clientdata(client);
 int err;

 err = i2c_detach_client(client);
 if (err) {
 dev_err(&client->dev,
 "Client deregistration failed, "
 "client not detached.\n");
 return err;
 }
 kfree(client);
 kfree(data);
 return 0;
}

As the i2c_attach_client function was called to register the struct i2c_client
structure with the I2C core, the i2c_detach_client function must be called to
unregister it. If that function succeeds, the memory the driver has allocated for
the I2C device then needs to be freed before returning from the function.

This example driver does not specifically remove the sysfs files from the sysfs
core. This step is done automatically in the driver core within the
i2c_detach_client function. But if the author would like, the file can be removed
manually by a call to device_remove_file.

Conclusion

This two-part series of articles has explained the basics of how to write a kernel
I2C bus driver, I2C algorithm driver and I2C chip driver. A lot of good
information on how to write I2C drivers can be found in the Documentation/i2c
directory in the kernel tree and on the Lm_sensors Web site
(secure.netroedge.com/~lm78).

Greg Kroah-Hartman currently is the Linux kernel maintainer for a variety of
different driver subsystems. He works for IBM, doing Linux kernel-related
things, and can be reached at greg@kroah.com.

Archive Index Issue Table of Contents

 Advanced search

http://secure.netroedge.com/~lm78
mailto:greg@kroah.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

 Advanced search

Kernel Korner

I/O Schedulers

Robert Love

Issue #118, February 2004

Here's how I/O schedulers contribute to disk performance in Linux and the
improvements you can get from the new I/O schedulers in the 2.6 kernel.

Although most Linux users are familiar with the role of process schedulers,
such as the new O(1) scheduler, many users are not so familiar with the role of
I/O schedulers. I/O schedulers are similar in some aspects to process
schedulers; for instance, both schedule some resource among multiple users. A
process scheduler virtualizes the resource of processor time among multiple
executing processes on the system. So, what does an I/O scheduler schedule?

A naïve system would not even include an I/O scheduler. Unlike the process
scheduler, the I/O scheduler is not a mandatory component of the operating
system. Instead, performance is the I/O scheduler's sole raison d'être.

To understand the role of an I/O scheduler, let's go over some background
information and then look at how a system behaves without an I/O scheduler.
Hard disks address their data using the familiar geometry-based addressing of
cylinders, heads and sectors. A hard drive is composed of multiple platters,
each consisting of a single disk, spindle and read/write head. Each platter is
divided further into circular ring-like tracks, similar to a CD or record. Finally,
each track is composed of some integer number of sectors.

To locate a specific unit of data in a hard drive, the drive's logic requires three
pieces of information: the cylinder, the head and the sector. The cylinder
specifies the track on which the data resides. If you lay the platters on top of
one another (as they are in a hard disk), a given track forms a cylinder through
each platter. The head then identifies the exact read/write head (and thus the
exact platter) in question. The search now is narrowed down to a single track
on a single platter. Finally, the sector value denotes the exact sector on the

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

track. The search is complete: the hard disk knows what sector, on what track,
on what platter the data resides. It can position the read/write head of the
correct platter over the correct track and read the proper sector.

Thankfully, modern hard disks do not force computers to communicate with
them in terms of cylinders, heads and sectors. Instead, modern hard drives
map a unique block number over each cylinder/head/sector triplet. The unique
number identifies a specific cylinder/head/sector value. Modern operating
systems then can address hard drives using this block number—called logical
block addressing—and the hard drive translates the block number into the
correct cylinder/head/sector value.

One thing of note about this block number: although nothing guarantees it, the
physical mapping tends to be sequential. That is, logical block n tends to be
physically adjacent to logical block n+1. We discuss why that is important later
on.

Now, let's consider the typical UNIX system. Applications as varied as
databases, e-mail clients, Web servers and text editors issue I/O requests to the
disk, such as read this block and write to that block. The blocks tend to be
located physically all over the disk. The e-mail spool may be located in an
entirely different region of the disk from the Web server's HTML data or the
text editor's configuration file. Indeed, even a single file can be strewn all over
the disk if the file is fragmented, that is, not laid out in sequential blocks.
Because the files are broken down into individual blocks, and hard drives are
addressed by block and not the much more abstract concepts of files, reading
or writing file data is broken down into a stream of many individual I/O
requests, each to a different block. With luck, the blocks are sequential or at
least physically close together. If the blocks are not near one another, the disk
head must move to another location on the disk. Moving the disk head is called
seeking, and it is one of the most expensive operations in a computer. The seek
time on modern hard drives is measured in the tens of milliseconds. This is one
reason why defragmented files are a good thing.

Unfortunately, it does not matter if the files are defragmented because the
system is generating I/O requests for multiple files, all over the disk. The e-mail
client wants a little from here and the Web server wants a little from there—but
wait, now the text editor wants to read a file. The net effect is that the disk head
is made to jump around the disk. In a worst-case scenario, with interleaved I/O
requests to multiple files, the head can spend all of its time jumping around
from one location to another—not a good thing for overall system
performance.

This is where the I/O scheduler comes in. The I/O scheduler schedules the
pending I/O requests in order to minimize the time spent moving the disk head.
This, in turn, minimizes disk seek time and maximizes hard disk throughput.

This magic is accomplished through two main actions, sorting and merging.
First, the I/O scheduler keeps the list of pending I/O requests sorted by block
number. When a new I/O request is issued, it is inserted, block-wise, into the list
of pending requests. This prevents the drive head from seeking all around the
disk to service I/O requests. Instead, by keeping the list sorted, the disk head
moves in a straight line around the disk. If the hard drive is busy servicing a
request at one part of the disk, and a new request comes in to the same part of
the disk, that request can be serviced before moving off to other parts of the
disk.

Merging occurs when an I/O request is issued to an identical or adjacent region
of the disk. Instead of issuing the new request on its own, it is merged into the
identical or adjacent request. This minimizes the number of outstanding
requests.

Let's look at an example. Consider the case where two applications issue
requests to the following block numbers, such that they arrived in the kernel in
this order: 10, 500, 12, 502, 14, 504 and 12. The I/O scheduler-less approach
would service these blocks in the given order. That is seven long seeks, back
and forth between two parts of the disk. What a waste! If the kernel sorted and
merged these requests, however, and serviced them in that order, the results
would be much different: 10, 12, 14, 500, 502 and 504. Only a single far-off seek
and one less request overall.

In this manner, an I/O scheduler virtualizes the resources of disk I/O among
multiple I/O requests in order to maximize global throughput. Because I/O
throughput is so crucial to system performance and because seek time is so
horribly slow, the job of an I/O scheduler is important.

 The Linus Elevator

The I/O scheduler found in the 2.4 Linux kernel is named the Linus Elevator. I/O
schedulers often are called elevator algorithms, because they tackle a problem
similar to that of keeping an elevator moving smoothly in a large building. The
Linus Elevator functions almost exactly like the classic I/O scheduler described
above. For the most part, this was great because simplicity is a good thing and
the 2.4 kernel's I/O scheduler just worked. Unfortunately, in the I/O scheduler's
quest to maximize global I/O throughput, a trade-off was made: local fairness—
in particular, request latency—can go easily out the window. Let's look at an
example.

Consider a stream of requests to logical disk blocks such as 20, 30, 700 and 25.
The I/O scheduler's sorting algorithm would queue and issue the requests in
the following order (assuming the disk head currently is at the logical start of
the disk): 20, 25, 30 and 700. This is expected and indeed correct. Assume,
however, that halfway through servicing the request to block 25, another
request comes in to the same part of the disk. And then another. And yet
another. It is entirely feasible that the request way over to block 700 is not
serviced for a relatively long time.

Worse, what if the request was to read a disk block? Read requests generally
are synchronous. When an application issues a request to read some data, it
typically blocks and waits until the kernel returns the data. The application
must sit and wait, twiddling its thumbs, until that request way over at block 700
finally is serviced. Writes, on the other hand, typically are not synchronous—
they are asynchronous. When an application issues a write, the kernel copies
the data and metadata into the kernel, prepares a buffer to hold the data and
returns to the application. The application does not really care or even know
when the data actually hits the disk.

It gets worse for our friend the read request, however. Because writes are
asynchronous, writes tend to stream. That is, it is common for a large writeback
of a lot of data to occur. This implies that many individual write requests are
submitted to a close area of the hard disk. As an example, consider saving a
large file. The application dumps write requests on the system and hard drive
as fast as it is scheduled.

Read requests, conversely, usually do not stream. Instead, applications submit
read requests in small one-by-one chunks, with each chunk dependent on the
last. Consider reading all of the files in a directory. The application opens the
first file, issues a read request for a suitable chunk of the file, waits for the
returned data, issues a read request for the next chunk, waits and continues
likewise until the entire file is read. Then the file is closed, the next file is
opened and the process repeats. Each subsequent request has to wait for the
previous, which means substantial delays to this application if the requests are
to far-off disk blocks. The phenomenon of streaming write requests starving
dependent read requests is called writes-starving-reads (see Sidebar “Test 1.
Writes-Starving-Reads”).

Test 1. Writes-Starving-Reads

In the background, perform a streaming write, such as:

while true
do
 dd if=/dev/zero of=file bs=1M
done

Meanwhile, time how long a simple read of a 200MB file takes:

time cat 200mb-file > /dev/null

This test demonstrates the writes-starving-reads problem.

The possibility of not servicing some requests in a reasonable amount of time is
called starvation. Request starvation results in unfairness. In the case of I/O
schedulers, the system explicitly has decided to trade fairness for improved
global throughput. That is, the system attempts to improve the overall
performance of the system at the possible expense of any one specific I/O
request. This is accepted and, indeed, desired—except that prolonged
starvation is bad. Starving read requests for even moderate lengths of time
results in high application latency for applications issuing read requests during
other disk activity. This high read latency adversely affects system performance
and feel (see Sidebar “Test 2. Effects of High Read Latency”).

Test 2. Effects of High Read Latency

Start a streaming read in the background:

while true
do
 cat big-file > /dev/null
done

Meanwhile, measure how long it takes for a read of every file in the kernel
source tree to complete:

time find . -type f -exec cat '{}' ';' > /dev/null

This measures the performance of a series of small dependent reads during a
large streaming read.

 The Deadline I/O Scheduler

Preventing the starvation of requests in general, and read requests in
particular, was a goal of the new 2.6 I/O schedulers.

The Deadline I/O Scheduler was introduced to solve the starvation issue
surrounding the 2.4 I/O scheduler and traditional elevator algorithms in
general. As discussed, the Linus Elevator maintains the sorted list of pending I/
O requests in a single queue. The I/O request at the head of the queue is the
next one to be serviced. The Deadline I/O Scheduler continues to keep this
queue, but kicks things up a notch by introducing two additional queues—the
read FIFO queue and the write FIFO queue. The Deadline I/O Scheduler keeps

the items in each of these queues sorted by submission time (effectively, first in
is first out). The read FIFO queue, as its name suggests, contains only read
requests. The write FIFO queue, likewise, contains only write requests. Each
FIFO queue is assigned an expiration value. The read FIFO queue has an
expiration time of 500 milliseconds. The write FIFO queue has an expiration
time of five seconds.

When a new I/O request is submitted, it is insertion-sorted into the standard
queue and placed at the tail of its respective (either read or write) FIFO queue.
Normally, the hard drive is sent I/O requests from the head of the standard
sorted queue. This maximizes global throughput by minimizing seeks, as the
normal queue is sorted by block number, as with the Linus Elevator.

When the item at the head of one of the FIFO queues, however, grows older
than the expiration value associated with its queue, the I/O scheduler stops
dispatching I/O requests from the standard queue. Instead, it services the I/O
request at the head of the FIFO queue, plus a couple extra for good measure.
The I/O scheduler needs to check and handle only the requests at the head of
the FIFO queues, as those are the oldest requests in the queue.

Remember our old friend, the request to block 700? Despite the flood of write
requests to the faraway blocks, after 500 milliseconds the Deadline I/O
Scheduler would stop servicing those requests and service the read over at
block 700. The disk would seek to block 700, service the read request and then
continue servicing the other outstanding requests.

In this manner, the Deadline I/O Scheduler can enforce a soft deadline on I/O
requests. Although it makes no promise that an I/O request is serviced before
the expiration time, the I/O scheduler generally services requests near their
expiration times. Thus, the Deadline I/O Scheduler continues to provide good
global throughput without starving any one request for an unacceptably long
time. Because read requests are given short expiration times, the writes-
starving-reads problem is minimized.

 Anticipatory I/O Scheduler

This is all well and good, but it's not a perfect solution. Consider what happens
with our fictional request to block 700, which presumably is the first of many
dependent reads to that area of the disk. After servicing the read request, the
Deadline I/O Scheduler continues servicing the write requests to the earlier
blocks. This is fine, until the reading application submits its next read request
(say, to block 710). In 500 milliseconds, that request expires and the disk seeks
over to block 710, services the request, seeks back to where it was before and
continues servicing the streaming write. And then another read arrives.

The problem again stems from those darn dependent reads. Because reads are
issued in dependent chunks, the application issues the next read only when the
previous is returned. But by the time the application receives the read data, is
scheduled to run and submits the next read, the I/O scheduler has moved on
and begun servicing some other requests. This results in a wasted pair of seeks
for each read: seek to the read, service it and seek back. If only there was some
way for the I/O scheduler to know—nay, to anticipate—that another read would
soon be submitted to the same part of the disk. Instead of seeking back and
forth, it could wait in anticipation for the next read. Saving those awful seeks
certainly is worth a few milliseconds of waiting; we save two seeks.

This is, of course, exactly what the Anticipatory I/O Scheduler does. It began as
the Deadline I/O Scheduler; it implements the same deadline-based scheduling.
But it was gifted with the addition of an anticipation mechanism. When a read
request is submitted, the Anticipatory I/O Scheduler services it within its
deadline, as usual. Unlike the Deadline I/O Scheduler, however, the Anticipatory
I/O Scheduler then sits and waits, doing nothing, for up to six milliseconds.
Chances are good that the application will issue another read to the same part
of the filesystem during those six milliseconds. If so, that request is serviced
immediately, and the Anticipatory I/O Scheduler waits some more. If six
milliseconds go by without a read request, the Anticipatory I/O Scheduler
guessed wrong and returns to whatever it was doing before.

If even a moderate number of requests are anticipated correctly, a great deal of
time (two expensive seeks, each) is saved (Table 1). Because most reads are
dependent, the anticipation pays off most of the time. To further improve the
odds of a correct anticipation, the Anticipatory I/O Scheduler uses a heuristic to
better guess for which processes to wait. To this end, the scheduler maintains I/
O statistics about each process to keep track of its behavior. Because of these
statistics and intelligent heuristics, the Anticipatory I/O Scheduler correctly
anticipates the actions of applications a sufficiently large amount of the time to
be well worth the overhead.

Table 1. The Results

By minimizing unneeded seeks and more quickly servicing read requests, in
many workloads the Anticipatory I/O Scheduler provides both improved

I/O Scheduler and Kernel Test 1 Test 2

Linus Elevator on 2.4 45 seconds 30 minutes, 28 seconds

Deadline I/O Scheduler on 2.6 40 seconds 3 minutes, 30 seconds

Anticipatory I/O Scheduler on 2.6 4.6 seconds 15 seconds

request latency and global throughput over the Deadline I/O Scheduler and the
Linus Elevator. Unsurprisingly, the Anticipatory I/O Scheduler is the default I/O
scheduler in the 2.6 kernel. And rightly so, it rocks.

 Acknowledgement

Andrea Arcangeli and Jens Axboe are the primary authors of the Linus Elevator.
Jens Axboe is the primary author of the Deadline I/O Scheduler. Nick Piggin is
the primary author of the Anticipatory I/O Scheduler.

Robert Love (rml@tech9.net) is a kernel hacker at MontaVista Software and a
student at the University of Florida. He is the author of Linux Kernel
Development. Robert loves O.A.R. and lives in Gainesville, Florida.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:rml@tech9.net
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 Cooking with Linux

The Customer Is Always Served

Marcel Gagné

Issue #118, February 2004

Sometimes it takes more than wine to keep customers happy. Keep track of
your customers' needs, including pre-sales information, support and meetings.

Web-based intelligence, François, is the theme of this issue. As I planned the
menu for today, I was caught by the sheer number of possibilities that term
brought to mind. You too, mon ami? True, it could be Web-based artificial
intelligence programs, but I was thinking of simpler things. Encyclopedias,
business-to-business resources, dictionaries, new sites, search engines and
even electronic mail. Yes, François, I agree with you. With so much spam these
days, the intelligence in e-mail is becoming questionable. Nevertheless, e-mail
still is an indispensable tool for modern communication. Consider that closely
tied to e-mail, groupware solutions continue to grow, and you can begin to
understand why I chose today's menu.

We must continue this later, François, for our guests have arrived. Bonjour, mes
amis, and welcome to Chez Marcel, the Linux world's finest restaurant and
finest wine cellar. Please sit and make yourselves comfortable. François will
fetch the wine immédiatement. To the wine cellar, François, south wing.
Something Spanish is in order—the Bierzo Corullín 2000 is a perfect choice for
today's menu.

Right before you arrived, François and I were discussing Web-based
intelligence. From a business perspective, I tend to think that the kind of
intelligence that matters most is entirely customer-related. Without customers,
there is no business. Consequently, a great deal of energy goes into systems
that help in the management of customer relationships. This is where CRM
(customer relationship management) software comes into play. This type of
software gathers all sorts of customer information from the obvious contact
details to sales, marketing and support. With that information, companies can

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

assign tasks or reminders related to each customer's need. This could be calling
back on a specific product, supporting a request, dealing with a complaint,
setting up a meeting date or anything related to your relationship with a
particular customer. CRM systems run the gamut from very simple to highly
complex, corporate-wide, data-mining behemoths. Prices vary as well from no
or little cost to hundreds of thousands of dollars. That figure alone should give
you an idea of the importance businesses place on customer relationships.

Here in our Linux kitchen, with the help of open-source programmers, we can
sample a number of CRM systems while spending nothing more than a little
time.

Figure 1. CRM-ctt's main screen offers admin and configuration options.

The first CRM package I would like to look at is called CRM customer tracking
system (CRM-ctt). Its basic Web-based interface might make you look elsewhere
because it appears so simple—I confess I almost did the same thing. Hidden
underneath this simplicity, however, is a capable CRM system. With options for
multiple users, multiple languages, extensive customizations, security,
prioritization, e-mail notification and PDF reporting, CRM-ctt starts to look
rather impressive (Figure 1). Pick up a copy of the program at crm-
ctt.sourceforge.net.

To get the system up and running, you need a running Apache server, with PHP
and MySQL support. If you want graphical support for CRM-ctt, you also need
to have the php-gd package installed. The installation procedure takes a few

https://secure2.linuxjournal.com/ljarchive/LJ/118/7243f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7243f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7243f1.large.jpg
http://crm-ctt.sourceforge.net
http://crm-ctt.sourceforge.net

steps, but it is not complicated. Extract the package into your Web server's
document root. You also may want to change the name of the directory at this
point:

cd /var/www/html
tar -xzvf crm-1.9.2-19102003.tar.gz
mv crm-1.9.2-19102003 crm

Before you continue, change the ownership of the CRM directory to that of your
Web server's user and group. In my case, that meant running chown -R
apache.apache crm.

Let's move on to the actual configuration of the software. Start by pointing your
browser to the location where the application is installed (something like http://
www.webserver.dom/crm). You then are led through a number of setup
screens, the last of which involves the creation of your company repository.
From here, follow the steps—enter your name, the name and e-mail address of
the administrator and your chosen admin password. There are four Web-based
steps in all.

The final step in the installation procedure is to write out the configuration file.
The suggested method here is to change the permissions on the
header.inc.php file temporarily:

cd /var/www/html/crm
chmod 777 header.in.php

Return to your installation page and click Try Now. If all goes well, you should
be presented with a successful completion message. You also can choose to
generate the file and copy it manually to the directory where CRM is installed.
Once you have completed this step, change the permission of the header file
from 777 back to 755. Now, go to the bottom of the page. Click the highlighting
where it says “When done, point your browser here”, and you are taken to the
main login screen. Log in with your admin user name and password.

A system like this isn't particularly useful without customer information, so start
adding. Click the Customers tab, then click Add a customer on the screen that
follows. Repeat this for all of your customers. Once you have customer data
entered, you can create Entities against those customers. An entity is anything
you have to do for that customer, whether it is a pending order, an open
trouble ticket, a friendly follow-up call or a note to send flowers on someone's
birthday. CRM-ctt even can send you an e-mail to remind you of those things.
As you explore CRM-ctt, you'll find great reporting features, including a one-
click export to PDF option for quick, professional reports.

Because CRM can remind employees of people they need to contact and when,
you also should add an entry to cron so it can send these e-mail notifications.
What's interesting here is the server doing the mail-outs can be a machine
other than the one running CRM-ctt. Although I show you only one entry (for
8:00 am), you could have the notify process run as often as you deem
necessary for your organization. The yourCRONpwd in the following example is
set in the Administration menu on CRM-ctt's main page, under Change global
system's values.

CRM Alarm date manager
0 8 * * * wget http://www.webserver.dom/crm/
↪duedate-notify-cron.php?password=yourCRONpwd
↪\&reposnr=XXX 1> /dev/null 2> /dev/null

As an administrator, you can add other accounts so you can delegate tasks to
other members of your organization. From the administration screen, you also
can generate management reports for your entire customer base, another task
that can be exported to PDF reports. To help you along, CRM-ctt includes an on-
line manual.

Figure 2. CRM-ctt provides easy reporting and one-click PDF exporting.

Many CRM packages are available for Linux, and all of them track customer
relationships as the core of what they do. If you look closely, though, you might
think that CRM packages look a lot like some of the new Web-based groupware
suites. And you might be right. Many of the ideas behind a good CRM system
also exist in a good groupware system. What sets groupware apart is the scope
of the Web-based intelligence it provides and the collaborative possibilities it

https://secure2.linuxjournal.com/ljarchive/LJ/118/7243f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7243f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7243f2.large.jpg

opens. Groupware suites can include centralized electronic mail, calendars,
address books, discussion forums, call tracking and any number of other
applications. One Web-based groupware suite that I think is well worth
checking into is eGroupWare.

eGroupWare is a GPL suite with an open-source API, so applications can be
created and added to the system easily. Among the applications included are e-
mail, calendaring, an infolog for tracking customer calls and setting up to-do
lists, a trouble ticket system, forums, personal and corporate address books, a
knowledge base, a wiki documentation system and more. There's also a site
manager feature, so individual users can create and deploy their own Web
sites. eGroupWare does all this while sporting a slick-looking business-ready
face (Figure 3). At the time of this writing (early November 2003), eGroupWare
was about two weeks away from its 1.0 release.

Figure 3. eGroupWare offers a calendar, trouble ticket system and management for user Web
sites.

eGroupWare supports the two most popular open-source database formats,
MySQL and PostgreSQL. In my test, I chose to run it with PostgreSQL, but both
formats are easy to set up. To get in on the eGroupWare action, download the
package from www.egroupware.org. Tarballs and binary packages both are
available.

To install from the tarred and gzipped bundle, extract the package into your
Web server's document root. For instance, a default Apache installation should

https://secure2.linuxjournal.com/ljarchive/LJ/118/7243f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7243f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7243f3.large.jpg
http://www.egroupware.org

have document root at /usr/local/apache/htdocs, whereas an RPM-based install
(such as Red Hat) often has it at /var/www/html:

cd /var/www/html
tar -xzvf eGroupWare-relnum.tar.gz

This step creates a directory called egroupware. Change the permissions on
this directory tree like this:

chown -R apache.apache egroupware

Assuming a PostgreSQL installation, your next step is to create a PostgreSQL
user to access the database. Do this by switching to your postgres user:

$ su - postgres
$ createuser egroupware
Shall the new user be allowed to create
databases? (y/n) y
Shall the new user be allowed to create more new
users? (y/n) n
CREATE USER

When asked whether this user is allowed to create other databases, say yes.
When asked whether this user can create other users, choose no. All that's left
to do is create a database for eGroupWare. Still logged in as the postgres user,
type the following:

$ createdb -U egroupware egroupware_db
CREATE DATABASE

If you don't like the idea of calling it egroupware, you could use basically any
name you want for the database or modify the name slightly, as I did above.
After this, you are done with the command-line work, so fire up your browser
and finalize eGroupWare's settings. Open up Mozilla, Konqueror or any
JavaScript-enabled browser and point your Web server to http://
yourwebserver/egroupware/setup.

On this screen, enter the relevant information for your setup to create your
header configuration file (header.inc.php). If you changed your DB user from
egroupware to something else, make sure you identify it here. The same holds
true for the database name. You also should assign a header password and an
administration password. The header password lets you modify or recreate the
configuration file you are building now.

When you are finished, you are taken to the setup/header login screen. You
already have created the header file, so chances are you do not wish to do it all
over again, non? Your concern now is the actual eGroupWare setup. Before we

move to this step, I have noticed that many of you have emptied your glasses.
François, if you would kindly do the honor of refilling them—merci.

Once you have logged in using the admin password, the setup checks to see if
your database has been created properly and if the appropriate user ID defined
in the header creation step is used. If everything has gone well up to this point,
you should be at Step 1 of the local configuration. Click Install to create the
application tables and install the eGroupWare suite of applications. The system
chugs along for a couple of minutes while it does this.

When everything has been completed, check the browser's screen to make
sure no error messages have been reported, and click the Recheck my
Installation button. If all has gone well, you can go on to Step 2 and create your
admin account. The option also exists to create three demo accounts, but you
do not have to do this. Step 3 lets you define the default language to be used,
and Step 4 is for individual application management. From this dialogue, you
can specify whether you want all the applications (this is the default) or only
some of them. When you log out from here, your installation is complete.

Now it's time to start doing things with eGroupWare; begin by logging in with
your admin account. This most likely means pointing your browser to http://
your.server.dom/egroupware. Along the top of the screen, you should see a
number of icons representing the various groupware services. To the left,
menus appear based on the functions of the current application, although a
smaller menu with Home, Preferences, About and Logout always is there. The
look and feel can be modified to suit your personal tastes by clicking
Preferences and making adjustments.

If you are the administrator, you can make changes for the entire organization.
You even can force some defaults and prevent users from changing them, a
useful feature for the corporate administrator. User accounts can be created
with predefined applications delivered to their specific login based on groups.
For instance, the support group may need access to the trouble ticket system
(Figure 4). Using this group-based approach provides a consistent set of tools
for your users. Create your groups first, decide what applications they need to
access and create your users based on those groups.

https://secure2.linuxjournal.com/ljarchive/LJ/118/7243f4.large.jpg

Figure 4. Entering a Trouble Ticket in eGroupWare

In terms of the future and ongoing support, eGroupWare has an active
community of users and developers. Several mailing lists and an IRC channel
are available, should you find yourself needing answers to your questions.

Mon Dieu! We are running out of time once again. Space and time do not
permit me to cover anything else in detail today, but many excellent packages
out there are worthy of your consideration. Although we all enjoy cooking with
Linux, I humbly suggest that our customer/restaurateur relationship needs no
software to manage it. Instead, I shall continue providing you comfortable
chairs at your favorite table, and François shall keep your glasses filled.
Sometimes, simpler is better. François, if you would do the honors, please. Until
next time, mes amis, let us all drink to one another's health. A votre santé Bon
appétit!

Resources

CRM-ctt: crm-ctt.sourceforge.net

eGroupWare: www.egroupware.org

Marcel's Wine Page: www.marcelgagne.com/wine.html

Marcel Gagné (mggagne@salmar.com) lives in Mississauga, Ontario. He is the
author of the newly published Moving to Linux: Kiss the Blue Screen of Death

https://secure2.linuxjournal.com/ljarchive/LJ/118/7243f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7243f4.large.jpg
http://crm-ctt.sourceforge.net
http://www.egroupware.org
http://www.marcelgagne.com/wine.html
mailto:mggagne@salmar.com

Goodbye! (ISBN 0-321-15998-5) from Addison Wesley. His first book is the
highly acclaimed Linux System Administration: A User's Guide (ISBN
0-201-71934-7). In real life, he is president of Salmar Consulting, Inc., a systems
integration and network consulting firm.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Paranoid Penguin

Seven Top Security Tools

Mick Bauer

Issue #118, February 2004

Simply installing more software won't make your systems more secure. But
with these seven packages, you can learn to set up a security policy and test
that the other software on your system complies with it.

Linux supports a wealth of outstanding free and open-source security tools—
enough, obviously, to write a monthly column on the topic. But whereas I
usually focus on one or two particular tools or techniques in-depth, this month
I'd like to discuss, at a high level, a variety of my favorite security tools for Linux.

If you're new to Linux or to network security, this may be your first exposure to
these particular software packages, and I hope this column nudges you in the
direction to learn more. If you're familiar with a couple of them but not the
others, I hope this article helps you to augment your toolkit. But even if all of
this is old hat for you, I hope you find it amusing to see which of the t00lz on
my laptop have been getting the most CPU time lately. So without further ado, I
bring you the Paranoid Penguin's Choice.

 Netfilter/iptables

We begin with the most ubiquitous of our featured tools, Netfilter, the Linux
kernel's built-in firewall code. To be precise, the collection of modules in
question officially is called Netfilter—iptables is merely the user-space
command we use to configure the Netfilter kernel modules. The two names can
be used interchangeably most of the time except, of course, when you're
issuing iptables commands or talking to kernel developers.

Netfilter was the winner in the Best Security Tool category of our 2003 Editors'
Choice Awards. As I explained then, Netfilter is responsible for moving Linux
firewalls out of the primordial soup of dumb, stateless packet filtering and into

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

the modern era of stateful packet filters. What this means for non-security
geeks is Netfilter allows Linux firewalls to inspect network packets statefully in
relation to one another, that is, by associating them with established
connections, identifying them as beginning new transactions and so on. In
contrast, in pre-2.4 kernels Linux treated each packet as a standalone entity,
filtering it based strictly on where it came from and where it was headed. For
example, all the packets in an HTTP transaction were filtered separately rather
than being treated as a group, but no more.

This new packet power and intelligence has ramifications that extend beyond
Linux's usefulness as a network firewall. Netfilter is as useful for local security
on servers and even on workstations as it is on proper network firewalls—I
explain precisely how and include code examples in my article “Using iptables
for Local Security”, LJ, August 2002, and also in Chapter 3 of my book Building
Secure Servers With Linux.

The command iptables is, for many people, simple to use after spending some
time with the iptables(8) man page. Besides my own material on that topic, I
also recommend Robert Ziegler's book Linux Firewalls, 2nd Ed. (New Riders,
2002). iptables is eminently scriptable, and the aforementioned sources and
the Internet abound with example scripts you can adapt for your own use.

But what if you prefer to insulate yourself from the inner workings of packet
filtering and instead want a GUI front end that speaks plain English to you?
You're in luck: many quality third-party front ends for Netfilter exist. One of the
best is Firewall Builder (www.fwbuilder.org), which allows you to create firewall
rules with reusable objects and with wizards. I covered Firewall Builder in-depth
in my two-part series “Using Firewall Builder” (LJ, May and June 2003).

Another popular iptables helper is Mason, which automatically builds iptables
scripts by passively observing normal system use. This is useful especially for
personal firewall setups on workstations. Mason is available at users.dhp.com/
~whisper/mason. Yet another increasingly popular tool is Shorewall, which
generates iptables scripts based on how you configure a few simple text files in
the directory /etc/shorewall. Shorewall's home page is shorewall.net.

Finally, I'd be remiss if I didn't mention that many Linux distributions have their
own (distribution-specific) packages for using iptables. SuSE 8.2, for example,
has SuSEfirewall2, which automatically generates and runs iptables commands
based on simple parameters you set in the file /etc/sysconfig/SuSEfirewall2. If
your preferred distribution has such a tool, it's worth checking out—it already
may be installed on your system.

http://www.fwbuilder.org
http://users.dhp.com/~whisper/mason
http://users.dhp.com/~whisper/mason
http://shorewall.net

By the way, in case you're wondering what I myself prefer, I usually write my
own iptables scripts by hand. For me that's the simplest and most direct way;
then again I'm a professional firewall engineer—your needs and skills may vary.

 Bastille

Bastille, the brainchild of Jay Beale and Jon Lasser, is in a class by itself. It's a
script that performs a comprehensive lockdown of your Linux system, based
entirely on questions it asks you. What really sets it apart from other hardening
scripts is all the questions it asks are annotated copiously. Of all the security
tools I've seen, none does more to educate its users than Bastille. For this
reason, I especially recommend Bastille to newbies.

When I wrote a Linux Journal article on Bastille a couple of years ago
(“Battening Down the Hatches with Bastille” LJ, April 2001), I asked Jay Beale a
few questions over e-mail that, after meeting face-to-face soon after, led to an
enduring friendship. Bastille benefits greatly from Jay's outgoing personality,
and he uses direct and even entertaining language to enable you to help
Bastille tweak your system into a more secure state.

Bastille is supported officially on Red Hat, Mandrake and Debian GNU/Linux. It's
even been ported to HP-UX and Mac OS X. You can get Bastille at www.bastille-
linux.org.

 Nmap

Netfilter and Bastille are strictly defensive tools, but what if you want to test
your Linux box's current state of security? One way is to run a port scanner and
enumerate the listening ports on it, for the purpose of deducing which network
applications are running.

In a site-wide security audit, automated port scanners are invaluable in
determining how carefully and consistently hosts have been secured. If you run
a port scanner against hosts protected by a firewall, it can validate the firewall's
configuration. And at the most tactical level, a good port scanner tells you the
precise points of entry attackers can see on each host it runs against.

Nmap (Listing 1) is the undisputed king of port scanners: it's fast, low-profile,
free and feature-rich. Nmap offers a variety of scanning methodologies, from
the fast but noisy TCP Connect method to arcane but stealthful approaches,
such as Xmas Tree scanning. Nmap even comes with a GUI, NmapFE, though
it's quite easy to use from the command prompt as well. You can get the latest
version of Nmap from www.insecure.org, but your Linux distribution of choice
probably has its own reasonably current package. You most likely needn't look
any further than your Linux CDs to get Nmap.

http://www.bastille-linux.org
http://www.bastille-linux.org
http://www.insecure.org

Listing 1. Nmap reveals which network services are available on a host.

tamarin:/usr/src # nmap -sS -F -P0 -O 10.1.2.123

Starting nmap V. 3.00 (www.insecure.org/nmap/)
caught SIGINT signal, cleaning up
tamarin:/usr/src # nmap -sS -F -P0 10.1.2.123

Starting nmap V. 3.00 (www.insecure.org/nmap/)
Interesting ports on wuxia.wiremonkeys.org
(10.1.2.123):
(The 1134 ports scanned but not shown below are in
state: filtered)
Port State Service
21/tcp closed ftp
22/tcp open ssh
25/tcp open smtp
53/tcp open domain
80/tcp open http
119/tcp closed nntp
389/tcp open ldap
418/tcp closed hyper-g
443/tcp open https
636/tcp open ldapssl
873/tcp closed rsync
993/tcp open imaps
3389/tcp closed ms-term-serv
6666/tcp closed irc-serv
8080/tcp closed http-proxy
11371/tcp closed pksd

 Nessus

Whereas port scanners simply enumerate listening ports, security scanners
attempt to connect to open ports and find out as much as possible about the
applications doing the listening. At its simplest, this can amount to banner
grabbing, which is logging the text message the application prints upon
successful connection. Many applications identify themselves by name and
some even by version.

But professional-grade security scanners go much further than banner
grabbing. Once they identify which application is running on a given port, they
try to determine whether various known vulnerabilities can be exploited
against that application, sometimes by actually beginning but not following
through with penetration methods. Nessus (Figure 1) is a professional-grade
security scanner, but it's a free and 100% customizable one.

https://secure2.linuxjournal.com/ljarchive/LJ/118/7235f1.large.jpg

Figure 1. This sample Nessus report reveals a vulnerable SSH dæmon.

As with Nmap, the value of Nessus to professional security engineers is
immeasurable; I use both in my work all the time. But even civilians can benefit
from, for example, testing their hobby Web servers with Nessus. As with
Bastille, Nessus includes user education in its design goals. If you read a report
carefully, you can learn a thing or two not only about the vulnerabilities it
identifies but what to do to fix them.

Scanning, Probing and Fuzzing: Caution

I enjoy using and writing about port scanners, security scanners and other
offense-oriented security tools. In the hands of a careful and responsible user,
they serve an important role in validating system and network security.

They also carry significant potential for abuse, however, so much so that if
someone unexpectedly discovers you using such tools against their system,
they probably won't assume you're trying to help them. Never scan any host
you haven't been authorized explicitly to scan.

Also, never install a security scanner on a bastion host (a hardened, publicly
accessible server). Such hosts are at higher-than-average risk of being
compromised by outsiders, so they're the last place to keep security-probing
tools. If you need to do your scans on the same LANs as your target systems,
get a laptop computer. A used laptop capable of running Nmap, Nessus and

https://secure2.linuxjournal.com/ljarchive/LJ/118/7235f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7235f1.large.jpg

other tools shouldn't cost you more than $350 US, and I do much of my own
scanning and penetration-testing with such a system.

 Fuzzing with Paros

Before we leave the realm of security validation checking, let's consider Web
application security. Web applications constitute the single largest area of
growth both in Internet-accessible services and in externally exploitable system
vulnerabilities. So how do we test the security of our Web applications?

You might think that Nessus is a good start, and it is, but mainly for generic
Web dæmon security. Most of what Nessus tells us about Web services applies
to the server dæmon itself, such as Apache, not to the actual Web content it
serves up. It doesn't tell us whether our custom Web applications do proper
input validation, whether they're vulnerable to cross-site scripting
vulnerabilities, whether they're vulnerable to fuzzing attacks (in which expected
parameters are altered or fuzzed) and so forth. That's where tools like Paros
come in.

Paros (Figure 2) is a free tool released under the Clarified Artistic License, and
it's written in Java. You need the Java Runtime Environment installed in order to
use Paros. You can download both Paros' executable JAR file and its complete
source code from www.proofsecure.com.

Figure 2. Paros is a free tool for testing Web applications.

Paros works on a principle common to the new generation of Web security
tools. You run it as a local proxy on your scanning workstation, and all the
interaction between your local browser and the target Web server is brokered

http://www.proofsecure.com
https://secure2.linuxjournal.com/ljarchive/LJ/118/7235f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7235f2.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7235f2.large.jpg

by the security tool. In this way, you can capture an outbound query, alter or
fuzz it and then send it along to the server. For example, suppose your Web
application uses a form with pull-down menus, and you want to make sure that
the application is validating input properly. With Paros, you could replace pull-
down menu options arbitrarily with random strings—blozzle instead of monday
—and see that query's effect on the application.

Paros also supports several scanning-type features, such as directory traversal.
Although the JRE can be taxing on older systems, overall Paros is a flexible and
user-friendly tool. Furthermore, being Java-based, it's cross-platform. I've also
used it on several different flavors of Windows.

Paros isn't the only free fuzzing proxy. I also should mention Dave Aitel's SPIKE
Proxy. It too acts as a local proxy but has the ability to run automated fuzzing
attacks based on things it learns about the target site by watching you interact
with it. SPIKE has the added advantage of being written in Python, which means
much less CPU and memory overhead than Paros requires.

 F.I.R.E.

I'm closing my little survey with a forensics tool: William Salusky's F.I.R.E., the
Forensics and Incident Response Environment. It's unpleasant to contemplate,
but no matter how careful and proactive you are, you may nonetheless
someday experience a system compromise. If you do and you want to
understand how and why, F.I.R.E. can help.

F.I.R.E. is a single CD-ROM Linux distribution geared toward analyzing
compromised systems and recovering data from them. You can use it either by
rebooting the compromised system with the F.I.R.E. CD-ROM or by mounting
the CD-ROM in a running but feared-compromised Linux system and running
tools directly off the CD. The latter technique is useful particularly when you
don't trust the system's binaries, as when you fear they've been replaced by
rootkit or trojaned versions, but can't take the system off-line just yet.

Besides analysis, F.I.R.E. makes it easy to copy data from the compromised
system to other hosts on your network. F.I.R.E. also includes the X Windows
System and a variety of both command-line and X-based security tools
(including Nmap and Nessus). You can use F.I.R.E. to transform an ordinary
Windows laptop into an awesome penetration-testing juggernaut. And at no
extra charge, F.I.R.E.'s major functions can be accessed from a menu system
comprehendable even by those of us who aren't full-time computer forensics
specialists. You can learn all about and obtain F.I.R.E. at fire.dmzs.com.

http://fire.dmzs.com

 Conclusions

This article is by no means a comprehensive list of the many, many excellent
security tools available for Linux. I would have loved to devote blurbs to
Tripwire, AIDE, Nikto, GnuPG, FreeS/WAN, Snort, PSAD, Stunnel, OpenSSL and a
score of other worthy tools. But I've had fun showing off some of my favorite
tools, and I hope you've found it useful. Remember, many of these tools bestow
awesome powers upon their bearer: use them responsibly, ethically and
carefully. But so long as you do, have fun.

Mick Bauer, CISSP, is Linux Journal's security editor and an IS security
consultant in Minneapolis, Minnesota. He's the author of Building Secure
Servers With Linux (O'Reilly & Associates, 2002).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

EOF

Linux vs. SCO—A Foregone Conclusion

Jim Ready

Issue #118, February 2004

Failure to embrace disruptive technology leads to bad behavior and worse
business.

When a disruptive technology appears in an existing marketplace, established
players initially take pains, ostrich-like, to ignore it. Disruptive technologies
usually start out as underpowered or as answers in search of a question,
making it easy to belittle and discount the interloper. However, once a
disruptive technology gains traction and starts making in-roads to established
territory, the powers-that-be wake to the fact with one of two responses—they
either embrace the disrupter or attempt to crush it.

Linux is a disruptive technology par excellence. Linux began its life as a
hobbyist novelty and a graduate school project. Even after it made its way into
the world over the Internet, it lagged behind UNIX systems in terms of
capabilities, documentation, support and the ability to leverage the hardware
platforms on which it ran. What made (and still makes) Linux disruptive is that it
works. The open-source development model, incremental but steady as the
proverbial tortoise, relentlessly advanced the GNU/Linux operating system and
tools to reach and then surpass the startled proprietary hare. The cooperative
spirit of the Open Source community and the assurances provided by licenses
such as the GPL, LGPL, BSD copyright, NPL/MPL and others help prevent the
fragmentation endemic in proprietary UNIX and provide the legal basis for the
open-source process.

The divide between the powers that embrace Linux and those that would crush
it is wide and deep. Long-standing leaders, such as IBM, HP and Oracle, had the
vision to build new businesses with and on the Linux platform, despite or
because of their investment in proprietary software, including proprietary
UNIX. Foremost in the opposite camp is of course Microsoft, longtime foe of

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

UNIX and natural-born enemy of Linux, for both its open pedigree and the
open-source model.

Poor misguided SCO meanders somewhere in the chasm between the two
extremes. The SCO Group, reborn from Linux distributor Caldera and reminted
with the SCO name, now feels rejected as its base of UNIX licensees migrate to
Linux. With its claims against IBM and attempt to extort monies from Linux
users, SCO is trying to turn Caldera's earlier enthusiastic embrace into a
crushing clinch.

Outpaced technology companies have a long and sorry tradition of seeking in
court what they cannot achieve in the open marketplace. Legal remedy in lieu
of a successful business strategy always invokes the doctrine of unintended
consequences. SCO's attempts to recover lost business from IBM AIX royalties
will lead IBM and other licensees only to curtail their already declining
proprietary UNIX shipments. Attempting to extract license fees from enterprise
Linux users and embedded Linux deployers may delay Linux deployment in the
short term, thereby stalling SCO's attempt to generate license revenues.

Self-deception is a typical response to disruptive technology. SCO's stated Linux
Licensing Fees of $699 US for enterprise use and $32 US for embedded
deployment represent a fantasy worldview that is out of line with the pricing
and practices of both markets. On the enterprise side, this tidy sum is twice
what Microsoft demands for its Windows products in comparable applications.
For embedded systems, the SCO invoice outstrips typical low-volume royalties
by a factor of at least three and is several orders of magnitude more for high-
volume shipments in consumer electronics applications. For enterprise, the
SCO fee quickly would exhaust available IT budgets; for embedded, it would
overwhelm already slim margins on devices with bills of materials in the key
$50–$200 US range.

None of these legal machinations would enhance the position of SCO UNIX one
bit, nor would they garner Darl McBride any new Linux-based revenues. In
SCO's imagined universe, where it prevails in the IBM suit or in its Linux
licensing campaign, SCO still loses—does SCO imagine that it could capture,
wound or even kill Linux as a commercial platform? It ain't gonna happen. A
stuffed penguin in McBride's den would not lay any more golden eggs. Angry
enterprise and embedded Linux users would not turn around and license SCO
UNIX—it offers no technological advantage over Linux, even in high-end
systems, and is completely inappropriate for embedded applications. Serious
developers and users would wish a plague upon both SCO UNIX and SCO-
licensed Linux. Diehards would stick with Linux and help to create a version
scrubbed of any SCO detritus. Lesser souls might migrate to BSD or even end
up in the clutches of Microsoft. None of these scenarios helps SCO, whose

licensing-based revenue fantasy then reveals itself as a nightmare, first and
foremost for SCO itself.

McBride and company need to realize that in the long term, SCO's claims would
ensure that all SCO code, whether (temporarily) in Linux or in SCO UNIX,
becomes untouchable and unmarketable, in any form.

So, McBride, Boies, et al. —go ahead, continue gunning for Linux and open
source. Ready. Aim. Shoot yourself in the foot. Then, please hobble out of the
way. Some of us are trying to do business.

James Ready is president and CEO of MontaVista Software, Inc., and has more
than 25 years of technical and entrepreneurial experience. Cofounder of Ready
Systems, he pioneered the development of the first commercially viable, real-
time operating system (RTOS) product—the VRTX real-time kernel.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 AstroFlowGuard Appliance

José Nazario

Issue #118, February 2004

Along with a nice reporting system, this package delivers an integrated and
easy-to-manage interface with a good feature set.

Product Information.

• Manufacturer: NetSoft and Offmyserver
• URL: www.netsoft.co.za and www.offmyserver.com
• Price: $6,495 US

The Good.

• Integrated appliance.
• Full-featured product.
• Cost.

The Bad.

• IDS is not well developed.
• Work flow could use improvement.
• Browser compatibility issues in Web UI.

The AstroFlowGuard appliance is a combined bandwidth management system,
a VPN gateway, an IDS, a firewall and a NAT device. Along with a nice reporting
system, this package delivers an integrated and easy-to-manage interface with
a good feature set. Being an appliance, as opposed to a software distribution, it
can be less error-prone—for a cost.

These boxes have been shipping for several months now, and the company has
several customers both large and small. This means the company has been

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.netsoft.co.za
http://www.offmyserver.com

improving its product and proving itself in trials and deployments. Offmyserver
and NetSoft teamed up to bring this appliance to market, with NetSoft doing
the software and Offmyserver bundling it with the hardware. Offmyserver isn't
that new, either, as it is an employee buy-out of iXsystems, formerly BSDi.
Because of this, there's experience and market understanding behind this
product, and it shows.

 Setup Out of the Box

The AstroFlowGuard system ships as an appliance, so you get a box, a few
cables, a manual and the system. The hardware is based on a Pentium 4
processor and should fit nicely into a 19" rack. Be warned, though; it's got a
noisy fan, comparable to a medium- or large-sized router or enterprise switch,
so this isn't for an open equipment room.

Initially, you have two big options to configure the system. The first is to use the
LCD front panel to configure basic services. Here you can configure the basic IP
networking parameters (address, netmask and gateway) along with the
enabling or disabling of services. You navigate with a small number of easy-to-
use buttons, almost like a network printer. Alternatively, you can hook up a PS/
2 keyboard and a VGA monitor and use a curses-based configuration menu.
You get the same basic menu items with this option that you do with the LCD
screen. There isn't a command-line option, but most of the reporting is done
better in the GUI. I was surprised a serial console interface wasn't included.

Once you have the basics set up, you can begin the final setup stages using
your Web browser. This process isn't as easy as it sounds. I couldn't get the
system to respond to HTTPS until the firewall was disabled, but after that I
didn't have much difficulty. The login and product navigation is straightforward,
so you don't need to consult the manual much except for a few tasks.

Hardware-wise, the box for the AstroFlowGuard should be enough to manage
anyone's network. The system comes with four to six 10/100bT interfaces,
which should work for most networks. Gigabit Ethernet is not an option at this
time. AstroFlowGuard also lets you break out a DMZ network and a
management network, all on one device.

A likely scenario for deployment would be to rack the box and configure the
management address for the system. Once that's done, you would log in to the
UI and configure the networks for the system to route. There, you can begin
setting up your network management and enforcing that policy through the
VPN (for secure Internet endpoints), the firewall and the bandwidth monitor.

The traffic shaping module is one of the more novel features in this class of
device. With it, you can set up per-host and per-service bandwidth caps, which

can help make the best use of a small network pipe. For example, you can
configure a 50% maximum for Web traffic with an optional 10%, if needed, for
short bursts. If you find peer-to-peer communications are hogging bandwidth,
you can shape that down as well. Finally, if downloads from the outside world
are consuming bandwidth from a server you run, you can back that off too. The
UI makes all of this management relatively easy, and the reporting interface
helps you make those decisions quickly.

 Strengths

Under the hood is a Linux system, modified to boot without much issue or
interaction, and various applications for network monitoring. These
components include iptraf, rrdtool and Apache. This list probably gives the
impression that you could build something like this for your own network, given
an engineer or two for a few weeks. You probably could, but maintenance
would be a consideration in this scenario.

Maintenance, then, is probably the biggest selling point for this product—
AstroFlowGuard fairs very well in the build vs. buy comparison. Although it's
based on open and available components, it would take some effort to build a
system like this and work out the kinks, keeping it usable for a staff of
administrators. Because of this, what at first appears to be free quickly
consumes a lot of money and time.

AstroFlowGuard goes well beyond this point, however. By being an appliance
through and through, it's a simple matter of loading the box in a rack and
maintaining it from there. Even upgrades are painless. You simply select the
upgrade option from the menu, it tells you what changed and you go to it—
painless, and the upgrade to 1.002 happened without a hitch.

The price of AstroFlowGuard, under $6,500 US, puts it well below its
competition. For a bandwidth appliance, you could use a Packeteer or similar
product; there are various (and expensive) traffic monitors. VPN appliances also
can be quite expensive. Firewalls have been known to be expensive at times,
too, and finally, an IDS appliance typically costs this much without the other
features. Although the price may seem a bit steep, for that amount of money
you'd have difficulty finding an appliance that does one or two of these tasks.

One of those features typically found only in expensive commercial firewalls is
the support for failover. Parallel AstroFlowGuard devices can communicate and
detect when the other one has failed and begin routing around it. This is a very
useful feature for networks that require high availability.

Overall, the feature list of the AstroFlowGuard makes sense as a network edge
device. Most people deploy their IDS functionality here, and the other modules

(bandwidth shaping and monitoring, VPN tunneling and firewalling) all make
sense in a policy management device. This single box can meet the needs of
various small- and medium-sized business networks in a single relatively easy-
to-use package.

As of version 1.002, the on-line help for the product is solid and easy to
navigate. It's task-based, as opposed to feature-based, so it's easy to use when
you're actively trying to set up a new management rule.

 Drawbacks, Big and Small

There are, of course, a handful of drawbacks. The biggest one at this time is the
fact that this is a new product, still forming and working out some creases.
Although the major components are done, it has room to grow. Given this
package's price, I recommend you examine it closely in relation to your
network's needs before you dive in to a purchase, but you probably will like this
product.

The biggest drawback to the AstroFlowGuard's newness is the work flow within
the application. The reporting interface is done well, and it allows you to drill
down to various levels of detail. But, the configuration interface for adding
bandwidth and firewall rules, for example, is in need of some maturity. The
biggest complaint I had was figuring out the order in which various options
should be configured—it's by adding classes and then specific rules.

A second complaint some may have is the Web UI uses several Microsoft
Internet Explorer HTML and JavaScript extensions. This isn't a strict
requirement, however, and my contact at NetSoft tells me they're working on
changing that; expect this work to be done by the time you read this review.
With a quick read of the source code to the pages, you can find the right entry
points and use Mozilla on most pages without much difficulty.

One feature I found lacking is the IDS functionality. It seems to be a minimized
feature in version 1.002; one that probably will receive an overhaul in the
future. The configuration interface in this version was rather thin and didn't
give much detail to the signatures within the IDS database, nor was there any
way to configure new rules. When I enabled it on my home network, I received
various alerts for traffic that didn't make much sense, but I didn't find the
reporting interface for the IDS module very helpful either. I'd probably skip the
IDS functionality at this point and hope it improves in future revisions.

 What's Coming Next

Matt Olander, from Offmyserver, the company that distributes the
AstroFlowGuard system, tells me that many of these issues will be addressed in

the next revision of the software. The browser dependency will be removed.
Secondly, the IDS functionality will be improved, allowing you to edit and
escalate classes and events more significantly. And finally, the host
management internals will be more automated, using automatic host detection
on your local network. Combined, these new features significantly improve an
already good product.

 Conclusion

The AstroFlowGuard device certainly is a product worth looking at to bring a
small network up to speed. Because it's an appliance, hardware and software
configurations are kept at a minimum, meaning the staff can focus on other
aspects and not have to worry about compatibility or installation issues.
Currently at a 1.0 revision, some kinks need to be worked out, and not all of the
features are mature at the time of this writing. Despite this, AstroFlowGuard
compares favorably to other commercial offerings and beats them in terms of
price.

José Nazario, PhD, works as a software engineer and security researcher for an
unnamed Internet security company. He also develops on several open-source
projects, has contributed to various Linux publications and likes to travel and
give presentations.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 UNIX Systems Programming: Communication,

Concurrency, and Threads by Kay A. Robbins and Steven

Robbins

Ibrahim Haddad

Issue #118, February 2004

This updated second edition includes all-new chapters covering the Web and
multicast, plus a completely revised and updated remote procedure call (RPC)
chapter.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/118/7057f1.large.jpg

Prentice Hall, 2003

ISBN: 0-13-042411-0

$69.99 US

UNIX Systems Programming: Communication, Concurrency, and Threads is the
successor to the 1995 Practical UNIX Programming: A Guide to Communication,
Concurrency, and Multithreading. This updated second edition includes all-new
chapters covering the Web and multicast, plus a completely revised and
updated remote procedure call (RPC) chapter. Material on files, signals,
semaphores, threads and client-server communication also has been updated
and enhanced.

https://secure2.linuxjournal.com/ljarchive/LJ/118/7057f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7057f1.large.jpg

The book provides programming exercises for many fundamental concepts in
process management, concurrency and communication. These programming
exercises are similar to the exercises you would be doing as part of an
operating systems course. Exercises are specified for systematic development,
and many can be implemented in under 100 lines of code.

Another important feature of the book is compliance with the POSIX standards,
the single UNIX specification adopted since the publication of the first edition.

The book provides everything you need to program with threads, TCP/IP and
RPC. The authors explain the essentials of UNIX programming, concentrating
on communication, concurrency and multithreading techniques, and why,
when and how to use them in a tutorial manner. They provide a lot of reusable
source code examples, all complete and ready to be compiled and run.

Another nice feature of the book is that it shows how to design complex
software to get the best performance from a POSIX system. Many short
examples are featured throughout the book, as are a number of hands-on
projects that help readers expand their skill levels. The authors take a practical
approach and use short code snippets to illustrate how to use system calls.

I highly recommend adding this book to your UNIX library if you want to learn
UNIX system programming essentials with a concentration on communication,
concurrency and multithreading techniques. It is the book that will keep you
wondering how you were working without it.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters

Readers sound off.

 Laptop Vendor Catches the Cluetrain

As a Linux user and supporter, while I truly enjoy seeing evidence of businesses
that get it, I also feel I have to share my experiences with a vendor that for a
time seemed to have forgotten that one of the most important values we share,
as buyers and sellers, users and hackers, is community, and that whenever we
stray from open communication and straight dealing, we do so at our own
peril.

Four months ago, I set out to purchase a new laptop to replace an aging VAIO
that I had loaded with Linux manually, and in addition to the creeping
obsolescence of the hardware, I always have been frustrated by certain
incompatibilities, especially the IEEE 1394 chipset. I was looking forward to
getting a beefier machine, from a Linux friendly vendor, so I finally could do
some amateur video work with my Mini-DV camcorder. I decided to purchase
my system from QLI, based on several recommendations I found in the on-line
archives of this very magazine. I was excited at the prospect of receiving my
new, more powerful, super-slim, pre-loaded with my fave distro, with 100%
compatible hardware laptop. I initially was encouraged that my credit card was
charged right away, assuming this meant the unit would ship soon. This quickly
turned to confusion, frustration and eventually anger.

For the next two months, every time I tried to get information about my order, I
was given a new variation of some story about how bad the supplier was. They
don't speak English; they never send e-mail; their ETAs are always vague. I was
understanding at first, but less so with each passing week, especially when an
important trip came and went, and I still had to use my existing, ailing portable.
At the two-month mark, I was facing the prospect of another trip, with more
intermittent failures due to x-ray machines and increasingly poor battery life.
Do you know how hard it is to find a usable outlet in some airports?

I canceled the order and was told the refund might take a while; the sales
department could be slow at times. They were so slow that the original credit
card expired, a fact even I had failed to notice. This merely made an already

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

bad situation worse. Communication, which had never been very good, got
worse. I had to send an e-mail every day, sometimes several times a day, to get
a reply at the rate of about once a week. This time, the stories told were about
problems with the order system and the credit-card processing company. More
weeks passed without resolution and without any good explanation of why I
was continuing to have to pay finance charges on a purchase that was never
fulfilled. I was more irritated with the poor communication than anything else.

Finally, I lodged a complaint with the local Better Business Bureau and sent a
draft of my letter to Linux Journal, in hopes that external intervention might
draw enough attention to bring things to a satisfactory resolution. I am pleased
to report that it did, although I am still disappointed it took as long as it did and
that I had to take the actions I did.

Finally, the matter came to the attention of Ray Sanders, CTO and one of the
founders of QLI. He helped clarify some of the internal issues that had caused
this whole affair to drag on and also explained some of the steps that had been
taken to correct the situation, including mandatory staff training, staff reviews
for those involved and serious negotiations with the credit-card processing
company who apparently were at least partly to blame, at one point attempting
to issue the refund but only successfully debiting QLI, never crediting my
account.

Ray's involvement finally resulted in a full refund, plus an unasked-for little
extra to help defray the finance charges. Most importantly, Ray clearly
communicated along the way what he was doing and when I should expect to
see things happen and made himself directly available in case of a problem. He
also was genuinely upset that it took his involvement to sort things out, another
encouraging sign that someone in the organization gets it. I also see this as
further proof that success can be dangerous, in that quick growth often dilutes
important values no matter how strongly held at the outset.

Companies like QLI offer products and services that appeal to a market filled
with savvier-than-usual consumers, so they must remember that trust and
respect are as important to building and keeping goodwill as superior products
and services at competitive prices. Problems such as mine should be seen as
opportunities to prove commitments to the community through honesty,
communication and courage.

—
Thomas Gideon

 Porting US House of Representatives Software to Linux?

I started the Linux-pe mailing list over a year ago, with the purpose of providing
a platform for Linux advocates in the US to organize to bring Linux into US
governments at the local, state and national levels. My own personal project, as
I live in Silver Spring, Maryland, a subway ride from Capitol Hill, is to get Linux
usable by Congress. Now any member of Congress certainly can install Linux,
but this will do a House of Representatives member very little good unless he
or she can use the HIR (House Information Resources) software, which has not
been ported to Linux, although there is nothing in principle preventing it from
being ported.

Our Congressman here in the Maryland suburbs is Chris Van Hollen, a liberal
Democrat. He is intelligent and energetic, but not at all IT-aware, nor is his staff.
However, by dint of energetic lobbying—e-mails and visits by me and several
other of his Linux-minded constituents—we have persuaded Mr Van Hollen to
write a letter to the members of the Committee on House Administration,
asking this committee, the one in charge of HIR, to investigate the issue of
porting the client to Linux. I believe we should all congratulate Mr Van Hollen
for taking this initiative and ask the members of the Committee on House
Administration to act on Mr Van Hollen's proposal.

To join Linux-pe, go to www.tux.org/mailman/listinfo/linux-pe.

—
Alan McConnell

If you want to look up the members of a committee of Congress or find out
your representative or senator's committees, you can do a search on
Congress.org, which runs Apache on Linux. —Ed.

 SE Linux from Outside the USA

I would like to correct a mistaken letter published in the November 2003 issue
of Linux Journal [“SE Linux outside US?”]. I did my initial SE Linux work while
living in The Netherlands and had no problem accessing any part of the NSA
Web site using the Zon and KPN ISPs. I am now living in Australia and still have
no problem accessing the NSA site. I am not aware of any country restrictions
on who can access the site, and I am quite sure that there is no block on The
Netherlands.

—
Russell Coker

http://www.tux.org/mailman/listinfo/linux-pe

 Mandrake Automatically Recognizes Pen Drives

I just finished reading the December 2003 issue of Linux Journal, and I was
pleased as usual. The article “Floppies for the New Millennium” by Rick Moen
contained an excellent tip about using noatime for USB pen drives, which I have
now adopted. As Moen pointed out, the problem of mounting his pen drive
read/write seems to be with that brand. I have used a Universal Smart Drive for
some time without any mounting problems. Using Linux-Mandrake 9.1, the first
time I plugged in the pen drive, an icon was added to the KDE desktop and an
entry was added to /etc/fstab (noatime added by me):

/dev/sdb1 /mnt/removable auto
user,iocharset=iso8859-1,kudzu,codepage=850,noauto,noatime,umask=0,exec
0 0

Right-clicking on the icon allows you to mount or unmount the pen drive. Of
course, as a holdover from the old days, I also have a second entry:

/dev/sdb1 /mnt/usd vfat noauto,user,noatime 0 0

It follows the line added by Mandrake. Otherwise, the icon's load routine gets
confused. Either mountpoint can be used from the command line. As Moen
noted, leave the FAT format in place. It makes the pen drive usable on most
machines (like that quarantined Windows box). Keep those articles coming!

—
Terry Vaughn

 Traffic Shaping Advantage

I am no longer a newbie, but every time I explore Linux I discover that it is more
than an ordinary operating system. I could not have prioritized my network
bandwidth better than with the easily configured traffic shaper package
shapecfg. Thanks to the community of developers and everyone who is
involved in Linux. I am more than convinced that by using Linux you will save
your company from all unnecessary expenses in securing a good networking
environment and administer your network more effectively. It's nice
discovering Linux.

—
Makinde Olojede
Nigeria

 SATA Question on Ultimate Linux Box

As always, I enjoyed getting your most recent issue [December 2003]. In the
Ultimate Linux Box article, it mentions that SATA is used. But nowhere does it

say what had to be done to get SATA working. Were any kernel patches
installed to get this to work with 2.4.19?

—
Eric

Glenn Stone replies: We did not use the regular Serial ATA interface on the
motherboard, but instead used the SATA interfaces on the 3ware Escalade 8500
card; the 3w-xxxx driver we used was the stock driver that comes with SuSE
Linux Enterprise Server 8. 3ware has been really good about seeing to it that its
drivers made it into the main kernel tree the last two years or so.

Serial ATA support for the Silicon Image chipset is present (in the source, at
least) in SuSE's 32-bit offerings in kernel 2.4.20. Linus' 2.4.22 tree adds support
for the Intel ICH5. Those are the only two SATA chipsets that linux-ide.org
advertises support for as of this writing.

 Photo of the Month

Here's a picture of my daughter Madeline holding her new little brother, Griffin.

—
Greg Kroah-Hartman

If your photo is chosen as Photo of the Month, we'll give you a one-year
subscription or extend your current subscription by one year. —Ed.

 Errata

December 2003, “Ultimate Linux Box”: Credits for technical support and other
assistance with the project were inadvertently omitted. The author would like

to thank Trey Harris and Chuck Henderson of Monarch Computer Systems,
along with Clay Deveny, Wanda Gillis and the rest of the Monarch staff; Paul
Chang of Arima Computer Corp.; Mark Visconti and Susan Austin of NVIDIA
Corp.; and Greg Kroah-Hartman of IBM for being instrumental in the success of
this project.

Also, it should have been noted that the case used for the ULB Project is a Lian-
Li product that is available only through Monarch Computer Systems
(www.monarchcomputer.com/Merchant2/merchant.mv?
Screen=PROD&Product_Code=100128).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.monarchcomputer.com/Merchant2/merchant.mv?Screen=PROD&Product_Code=100128
http://www.monarchcomputer.com/Merchant2/merchant.mv?Screen=PROD&Product_Code=100128
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

UpFront

diff -u, They Said It and more.

diff -u: What's New in Kernel Development

by Zach Brown

Last month I wrote about digsig, a security module that checks the checksum of
a binary before executing it to ensure that no compromised code is run on a
given system. Apparently, I was a bit more enthusiastic than various kernel
developers, notably Alexander Viro and Pavel Machek. It turns out (and the
digsig developers agree with this) that digsig is no more than a temporary
security tactic, which script kiddies would be able to work around after a fairly
short time. Historically, these sorts of temporary measures never have been
adopted into the kernel, precisely because they don't provide a robust solution.

With the 2.6.0-test1 kernel released in early November 2003, Linus Torvalds

announced a stability freeze, meaning patches would be accepted only if they
fixed data corruption, system crashes or some other serious breakage. Even
cleanup patches that don't actually change the behavior of the code are being
rejected now. According to Linus, the goal is to start the final preparations for
the official 2.6.0 release, at which point he has strongly hinted that he
immediately will hand maintainership of the 2.6 tree to Andrew Morton. This is
a change from 2.4, where he handed maintainership to Marcelo Tosatti only
after several releases. There is still no indication of when the 2.7 tree will fork; it
could occur at the same time as the hand-off to Andrew, though certainly not
before.

Rusty Russell and Tim Hockin together have produced a patch to raise the
number of supported groups under Linux to well over 200. In fact, the patch
supports thousands of groups, something various folks (like some of Tim's
Samba clients) sometimes want. Linus Torvalds felt that some incarnations of
their patch were uglier than others, but apparently he's ready to consider
support for that many groups, as long as the implementation doesn't make him
retch too hard into his hand.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Ian Pratt and others from the University of Cambridge Computer Laboratory
Systems Research Group have produced the first stable release of their Xen

virtual machine monitor for the x86 architecture and have ported the 2.4.22
kernel to it as a guest OS. Xen is designed to run multiple operating systems
simultaneously on a single computer. Once a kernel is ported to Xen, all user
binaries apparently will run unchanged; so in theory any Linux distribution
would run under Xen, with a drop-in kernel as the only modification. Currently,
it's not possible to run Xen recursively, though various twisted kernel hackers
have expressed such an interest.

Eli Billauer has created /dev/frandom, a random number generator that is up to
50 times faster than /dev/urandom, under some tests. Although not intended
to be random enough for cryptography (but it might one day become so), it
nevertheless is good for scientific simulations, stress tests on algorithms and
performing data-wipes. In spite of its various good qualities, it probably will
have to live as an external patch for quite a while, as several kernel developers
like Nick Piggin feel there is no compelling need to do /dev/frandom in kernel
space, because it could be done well enough entirely in user space.

Roman Zippel announced in mid-October 2003 an implementation of the iSCSI

specification. Although it's not a complete implementation and uses the
deprecated /proc filesystem instead of SysFS for its interface, it apparently is
already somewhat usable. Roman has promised to continue maintaining it if
there is enough interest, but without help he says it may be slow-going.

SQL-Ledger: www.sql-ledger.com

by David Bandel

I don't think I've seen any project come as fast or as far as this one has in the
three years I've been using it. This system offers full double-entry accounting
for almost any business in a large number of languages. I'd be hard-pressed to
find a better accounting package. Installation is extremely simple. If you have
LaTeX installed, you can output PDF files directly or e-mail your bills or
statements. The out-of-the-box configuration is based on the Canadian tax
system but easily can be adopted to any other system. One of the best features
is that the database uses PostgreSQL. If you need a full accounting package for
a business, this is it. Requires: Perl, Perl modules DBI, DBD- (DBD-Pg or DBD-
Oracle), PostgreSQL or Oracle, Web server capable of running Perl scripts, Web
browser and LaTeX (optional).

http://www.sql-ledger.com
https://secure2.linuxjournal.com/ljarchive/LJ/118/7238sqlf1.large.jpg

They Said It

I do not believe that we should be willing to buy or use voting systems where
the source code and design is not open for public review. I think there are
companies that would be willing to work in this model, particularly if the
contract provided some long-term commitments. This is not Britney Spears
we're talking about here–the integrity of our voting system is a fundamental
component of our government.

—Phil Windley, www.windley.com/2003/11/03.html#a893

eGovernment applications need to cost less, allow for rapid development,
provide a user–friendly experience for constituents and offer enhanced
security. Linux provides everything eGovernment initiatives need.

—Tom Adelstein, www.linuxjournal.com/article/7076

Interestingly, the most popular source of embedded Linux for future projects is
“home grown (I build my own from GNU/Linux downloaded sources)”. That is,
developers apparently prefer freely downloadable noncommercial sources–
such as kernel.org, Debian or the uClinux project–over commercial embedded
Linux distributions.

https://secure2.linuxjournal.com/ljarchive/LJ/118/7238sqlf1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7238sqlf1.large.jpg
http://www.windley.com/2003/11/03.html#a893
http://www.linuxjournal.com/article/7076

—Rick Lehrbaum, linuxdevices.com

gtick: www.antcom.de/gtick linuxdevices.com

Need a metronome? This metronome doesn't only give you a simple beat for
your music, it also gives you selectable beats, such as 2/4, 3/4, 4/4 or a
customizable beat. Variable speed and volume controls with both slider bars
for coarse tuning and an incremental wheel for fine-tuning allow you a lot of
flexibility. Requires: libgtk-x11-2.0, libgdk-x11-2.0, libatk-1.0, libgdk_pixbuf-2.0,
libm, libpangoxft-1.0, libpangox-1.0, libpango-1.0, libgobject-2.0,
libgmodule-2.0, libdl, libgthread-2.0, libglib-2.0, libpthread, glibc, libX11, libXi,
libXext, libXft, libXrender, libfontconfig, libfreetype, libz and libexpat.

LJ Index—February 2004

1. Minimum projected percentage TCO (total cost of ownership) savings for
Sanchez Computer Associates' Linux-based core processing system for
banks: 50

2. Millions of people using Linux in the world: 18
3. Top dollar price of Commercequest's software for helping companies

meet the new Sarbanes-Oxley corporate compliance law: 500,000
4. Percentage of IT budgets that go to internal staff: 70
5. Annual percentage growth rate of Wi-Fi access-point shipments through

2008: 50
6. Millions of Wi-Fi access points expected to be shipped annually in 2008: 1
7. Projected percentage growth rate in Wi-Fi access-point shipments in 2005:

132
8. Rank of Linux among embedded Wi-Fi access-point operating systems: 1

http://linuxdevices.com
http://www.antcom.de/gtick

9. Percentage of embedded Linux developers who preferred “home grown”
as their “Linux source/vendor” during the past two years: 15

10. Rank of “home grown” as the preferred “Linux source/vendor” for
embedded developers during the past two years: 2

11. Percentage of embedded Linux developers who preferred Red Hat as
their “Linux source/vendor” during the past two years: 17

12. Rank of Red Hat as the preferred “Linux source/vendor” for embedded
developers during the past two years: 1

13. Percentage of embedded Linux developers who prefer “home grown” as
their “Linux source/vendor” during the next two years: 18

14. Rank of “home grown” as the preferred “Linux source/vendor” for
embedded developers during the next two years: 1

15. Percentage of embedded Linux developers who prefer Red Hat as their
“Linux source/vendor” during the next two years: 17

16. Rank of Red Hat as the preferred “Linux source/vendor” for embedded
developers during the next two years: 2

17. Minimum percentage of future Linux embedded projects “attributable to
essentially noncommercial sources”: 50

18. Millions of Apache Web servers surveyed by Netcraft for November 2003:
30.30

19. Percentage of all surveyed Web servers that run Apache: 67.41
20. Percentage gain by Apache over the prior month: 2.80
21. Percentage loss by Microsoft Web servers during the same period: 1.65

Sources

• 1: Sanchez Computer Associates

• 2: Wired

• 3–6: Forbes
• 7–17: ABI Research, Linux Devices
• 18–21: Netcraft

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 From the Editor

Web Technologies for Business Apps

Don Marti

Issue #118, February 2004

Remember this? “That's a nice demo application you've got working on the
Linux box. Now spend ten times the money and twenty times the work to do it
for real.”

No matter how long it took, the “real” version on a proprietary platform
somehow never seemed to have the stability, performance or maintainability of
the version you put together with Perl, Python or PHP. The good news is that
now, even for the most conservative employers or clients, you no longer have
to redo your Linux projects on an approved platform.

The tools you have been using to build Web sites that aren't business-critical
now are seeing action in core business apps at more and more companies.

There's always someone who says that you can't possibly develop business
apps on that—it doesn't have feature X. Soon, though, someone does write
feature X for the new platform, or it turns out that you don't need feature X to
do business apps anyway. Then new projects that could have gone with the
legacy platform start going to the new one.

That's what's happening right now with the all-free, all-open source LAMP
platform, consisting of Linux, Apache, MySQL and the “P” languages—Perl,
Python and PHP.

Giovanni Organtini and Luciano M. Barone cover one large success story on
page 36. Their LAMP-based work-flow management system, used in assembling
a particle physics instrument with 500,000 parts, has replaced a proprietary
system. The new system cuts CPU and memory loads, improves performance
and, most important, slashes the amount of time that operators spend
interacting with the system, giving them more time to work on the product.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

On page 50, Tom Adelstein has some encouraging news: the LAMP platform
also is the basis of US government IT projects at the Navy, the Department of
Labor and other agencies. He reports that state and local governments are
succeeding with Linux too. Selling to the government is hard, but the consulting
firm gOSapps LLC has done more than 500 apps for 400 government bodies.
Fewer of your tax dollars are being wasted on lock-in, but there's still work to
be done.

Doc Searls has been following IT's biggest behind-the-scenes story for a year
now. Customers are using the power of Linux and other open-source software
to take control of their own technology decisions. Acronym alphabet soup and
projected releases in 2005 or 2006 might make for entertaining reading, but
when you've got a project to do, it's time to break out the tools that give you
freedom. Doc reports on Linux successes at Morgan Stanley, Ticketmaster and
Ernie Ball, on page 48.

Customer-facing Web sites have long taken advantage of Linux's performance,
flexibility and low total cost of ownership. The record industry, however, hasn't
been on the best of terms with the Web. Time to start over. On page 42, John
Buckman explains how he is running a record company that treats both the
audience and the artists with respect, not with Digital Rights Management or
other such indignities. I'm listening to an album I bought from the site right
now.

Whatever your business or your pleasure, there's something for you in this
issue. It's not all about the Web, either. With the article by Brett Schwarz on
page 72, you can build a custom phone system that saves money, integrates
voice over IP and even gives you a pop-up warning of special callers. Have a
productive and successful month, and see you next time.

Don Marti is editor in chief of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Best of Technical Support

Our experts answer your technical questions.

 USB Joystick?

I have a Logitech Wingman Force 3D, a USB joystick with force feedback. I'm
running a 2.4.20-20.9 kernel (Red Hat 9) with USB support enabled. Is there a
way to make USB joysticks work under Linux? I've done searches on Google and
I found a few possible solutions, but none of them worked for me. I do not care
so much for the force feedback component, but I would like to be able to make
the joystick work.

—
Pierre Rochefort

prochefort@rogers.com

USB joysticks should work fine under Linux. To learn how to configure them,
see the Linux USB Guide at www.linux-usb.org. If you still have questions about
USB support, you can ask on the linux-usb-users mailing list.

—
Greg Kroah-Hartman

greg@kroah.com

According to Johann Deneux's Web page at user.it.uu.se/~johannd/projects/ff/
index.shtml, he is developing a force-feedback driver for Linux. Complete
instructions and downloadable code are provided on this page, so you can test
whether this driver works with your device. You might find you need some code
compiling and module installation skills, but it may be worth the learning
experience. You also might want to try the Linux Input Driver
(linuxconsole.sourceforge.net/input/hardware.html) or the Linux joystick driver
(atrey.karlin.mff.cuni.cz/~vojtech/joystick), which also states that it supports
your device.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:prochefort@rogers.com
http://www.linux-usb.org
mailto:greg@kroah.com
http://user.it.uu.se/~johannd/projects/ff/index.shtml
http://user.it.uu.se/~johannd/projects/ff/index.shtml
http://linuxconsole.sourceforge.net/input/hardware.html
http://atrey.karlin.mff.cuni.cz/~vojtech/joystick

—
Felipe Barousse Boué

fbarousse@piensa.com

 Configuring a New Network Card

I need to configure my third network card on my Red Hat 6 system to start
automatically when the system reboots. How can this be done?

—
Akaize

akaize@zmsn.com

Your Red Hat release is a bit old; I'd suggest you upgrade it because you will get
many benefits, such as security, stability and more hardware drivers.
Nevertheless, you can try the user-friendly approach by using the netcfg or
netconfig utility (from a root shell) and following on-screen instructions and
options. Alternatively, you can edit the /etc/modules.conf and the /etc/
sysconfig/network-scripts/ifcfg-ethX (where X is the net card number) files
manually. The modules.conf file names each card and relates that name to the
corresponding module (driver) that you need to have in your system. The ifcfg-
ethX file is the actual configuration file of the card; there is one of these files
per network card. Follow the example of the first file, which must be named
ifcfg-eth0. The Ethernet HOWTO contains more information: www.ibiblio.org/
mdw/HOWTO/Ethernet-HOWTO-2.html#ss2.4.

—
Felipe Barousse Boué

fbarousse@piensa.com

 Setting Up Wi-Fi Restricted Mode on SuSE

I successfully installed SuSE 9.0 on my laptop, a ThinkPad 600E that uses a
Netgear MA401 wireless card. SuSE has detected my card properly, and I have
128-bit encryption enabled and working. The problem is I need to put the card
in restricted mode manually to be able to communicate with the access point.
Every time I reboot the laptop, I have to su into root and type iwconfig
wlan0 key xxxxxxxx restricted to make the card work. I configured
the card properly using YaST and included the encryption key, but it always

mailto:fbarousse@piensa.com
mailto:akaize@zmsn.com
http://www.ibiblio.org/mdw/HOWTO/Ethernet-HOWTO-2.html#ss2.4
http://www.ibiblio.org/mdw/HOWTO/Ethernet-HOWTO-2.html#ss2.4
mailto:fbarousse@piensa.com

defaults to open mode. Did I miss something here? How can I make iwconfig
default to restricted mode?

—
Kevin Lisciotti

lisciotti@yahoo.com

Make a copy of the file /etc/sysconfig/network/ifcfg.template and edit it to set
the parameters according to your proper setup. Also, take a look at
portal.suse.com/sdb/en/2002/11/wavelan.html, which offers more detailed
information on this subject.

—
Felipe Barousse Boué

fbarousse@piensa.com

 Red Hat 7.2 and Ethernet Card

I recently installed the Red Hat 7.2 distribution (my first Linux installation) that
came with the book Linux Administration for Beginners, which I borrowed from
a friend. When I installed Red Hat 7.2, I did not get a network config screen, as
was suggested and shown in the book. The installation is supposed to
recognize my network or something, but it doesn't. Hence I have been unable
to set up my Internet connection, which is key to more resources for learning
other than man pages.

I am using a home PC with the following components: Intel 3 500MHz, 256MB
of RAM, 20GB WD Caviar IDE and Realtek (also tried it with D-Link card) NIC. I
am connected by a cable modem and have no network, although I plan on
expanding to two computers soon.

Red Hat 7.2 does not seem to recognize eth0, although there is a constant
connection. I have searched and searched for instructions. Most direct me to
install drivers from floppies for Realtek, which already appear to come with the
distro, but as I said, I am really new to this and have no clue. I am about to go
buy Mandrake or Red Hat 9 to see if either proves to be a more useful
installation.

—
Marcel

mailto:lisciotti@yahoo.com
http://portal.suse.com/sdb/en/2002/11/wavelan.html
mailto:fbarousse@piensa.com

marcelnh4@hotmail.com

Without knowing specific error messages or seeing some log files, it is
extremely difficult to guess what is going on with your system. Is your network
card okay? Is it properly installed? Does it have any conflicts with other
hardware? Instead of buying another Linux distribution, you probably should
buy a new network card, one that you know is officially supported. Go to
hardware.redhat.com/hcl and look for a network card that fits your budget and
your system.

—
Felipe Barousse Boué

fbarousse@piensa.com

To rule out a hardware problem, try your system with Knoppix
(www.knoppix.net), which lets you run a current Linux from CD without
installing on your hard drive. You can download and burn Knoppix freely. If the
card works under Knoppix, you'll have more fun and have more time to learn
administration skills if you upgrade to a more current distribution. For your first
Linux distribution, try to select one with which your local user group, or
whatever source of support you use, is familiar.

—
Don Marti

info@linuxjournal.com

 Reconfiguring Wireless Keys for Different Sites

I use Wi-Fi on my laptop (running Red Hat 6.2) at a number of different sites,
each one with a different set of encryption keys. It's a hassle to have to edit /
etc/pcmcia/config.opts every time. Is there an easier way to manage my keys?

—
Andreas Meyer

ysgdhio@yahoo.com

Jean Tourrilhes maintains an extensive list of wireless utilities that do things like
manage configurations and monitor signal strength at www.hpl.hp.com/

mailto:marcelnh4@hotmail.com
http://hardware.redhat.com/hcl
mailto:fbarousse@piensa.com
http://www.knoppix.net
mailto:info@linuxjournal.com
mailto:ysgdhio@yahoo.com
http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html

personal/Jean_Tourrilhes/Linux/Tools.html. One of the tools listed is
waproamd, which automatically sets up preconfigured WEP keys based on the
ESSID of the wireless network you're on (0pointer.de/lennart/projects/
waproamd). There are also two simpler ways to deal with this issue, as
explained in Felipe's answer and my other answer.

—
Don Marti

info@linuxjournal.com

For a poor guy's quick-and-easy way with not much hassle: 1) write a small shell
script in /usr/local/bin for each site. Name each wireless-sitename or something
similar, list the corresponding appropriate iwconfig and ifconfig commands
(including the keys, of course) and set the proper permissions and ownership.
Whenever you get to the site, simply run the wireless-sitename script and you
should be set. This allows individual turn on/off control of access in each of
your preferred network sites.

—
Felipe Barousse Boué

fbarousse@piensa.com

The way I deal with this kind of thing is to make extra copies of the config file.
For example, you can create config.opts.home and config.opts.cafe, then set up
an alias or panel button for cafe to do this:

sudo cp /etc/pcmcia/config.opts.cafe \
/etc/pcmcia/config.opts \
&& sudo /etc/rc.d/init.d/pcmcia restart

and an alias or panel button for home to do the same thing with the home
version of the file.

—
Don Marti

info@linuxjournal.com

http://www.hpl.hp.com/personal/Jean_Tourrilhes/Linux/Tools.html
http://0pointer.de/lennart/projects/waproamd
http://0pointer.de/lennart/projects/waproamd
mailto:info@linuxjournal.com
mailto:fbarousse@piensa.com
mailto:info@linuxjournal.com

 Managing Desktop Users and Policies?

I have worked at several businesses that could use the power of Linux on the
desktop, but so far I have been reluctant to suggest it. It's not that I don't think
it's a superior product or that the relative cost savings are significant. It has to
do with the fact that these organizations are not likely to want to replace
conventional computers with dumb terminals or low-powered network
computers tied to a mainframe or server. Tied into this is the issue of
administering 20 machines, 100 machines or 2,000 machines. I have not found
anything so far that lets me sit down and look at a domain tree of users and
administer polices and profiles. My ignorance may be blatantly clear at this
point. I am a Linux user at home, but I am a Windows administrator and like the
apparent ease of managing a Windows network. Can you point me in the right
direction on this? Maybe I don't understand the vision or current mindset of the
community on system administration.

—
Aaron Sharp

baronvaile@mach500.net

Undoubtedly and disregarding the used technologies, you are talking about a
complex network configuration. Many issues come up: user management,
password management, directories, e-mail addresses, IP numbers, shared
resources and security. Many system administration tools and efforts exist in
the Free Software/Open Source community to deal with these issues. One of
them that I have used several times is Webmin, www.webmin.com. Webmin is a
powerful and extensible systems management tool; it even allows clustering
and remote systems management.

—
Felipe Barousse Boué

fbarousse@piensa.com

A flexible way to manage user information is with LDAP. Craig Swanson and
Matt Lung covered a unified system for shared address books, unified login and
shared file storage in the December 2002 issue of Linux Journal (/article/6266).
If you like the Webmin interface, you can use Webmin to manage an LDAP
database.

—
Don Marti

mailto:baronvaile@mach500.net
http://www.webmin.com
mailto:fbarousse@piensa.com
https://secure2.linuxjournal.com/ljarchive/LJ/104/6266.html

info@linuxjournal.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

On the Web

New Product Hype

Heather Mead

Issue #118, February 2004

If you're considering switching to a new distribution or purchasing some new
hardware, stop by our on-line product review section first.

Trying to keep up with all the new product announcements that come across
our desks would be a full-time job. Luckily, we have a pool of reviewers who
take on much of the responsibility for trying out new hardware, software,
books, games and every type of gadget they can get their hands on. Because
we have only enough print space to run one or two reviews per issue, the Linux
Journal Web site has become our best source for reviews.

The much shorter time frame involved in getting articles published on the Web
makes our Web site an ideal place to post reviews of new distribution releases.
The final Fedora Core 1 release arrived early in November 2003, and within a
week, Adam Jenkins' “Fedora at a Glance” was posted on our site
(www.linuxjournal.com/article/7257). Adam shared his experiences with
downloading and installing Fedora and then discussed Fedora's features—what
it had, what it didn't have and what was on its way. As more users probably will
be making the switch to Fedora in the coming months, Adam's article provides
some insight into what they'll be getting when they make the move.

If you're thinking about giving Gentoo a try, Sean Bossinger's “Gentoo Linux”
product review is worth a read (www.linuxjournal.com/article/7002). Sean
focuses his review on Gentoo's installation process, which is more manual than
the commercial distributions. The upside of the manual input is you can
optimize the compiled code for the settings specific to your system, which is
part of Gentoo's goal of being a highly customizable distribution. The downside
is all that customization can take quite a bit of time to achieve.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.linuxjournal.com/article/7257
http://www.linuxjournal.com/article/7002

If you're still riding the Opteron wave, check out Steve Hastings' review of the
“Appro Rackmount Dual Opteron Server” (www.linuxjournal.com/article/6883).
Or if you're looking for something a bit more fun, something in the way of a
gadget, we recently reviewed two Linux handheld devices. Apparently the really
cool PDAs aren't available in the US; luckily, you can order them on the Web
from international resellers. The Yopy 3700 that Guylhem Aznar reviewed
(www.linuxjournal.com/article/6933) was ordered through a French reseller.
Although it looks good and has a better keyboard, Guylhem isn't sure the Yopy
is a better purchase than a Zaurus. And Tony Steidler-Dennison's review of the
Sharp Zaurus SL-C760 (www.linuxjournal.com/article/7162) certainly makes it
sound like this is the coolest Zaurus and the coolest PDA ever. Its superior
screen display and its ability to function in either landscape or desktop mode,
thanks to a pivot hinge, might be enough to convince you that you need one.

I haven't even mentioned all the book reviews you can browse on our site. So
before you lay out any money on new purchases, visit the Linux Journal Web
site and click on Product Review or Book Reviews under Topics. If you're
interested in joining our reviewers mailing list and helping us test all this stuff,
send me an e-mail at info@linuxjournal.com.

Heather Mead is senior editor of Linux Journal.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://www.linuxjournal.com/article/6883
http://www.linuxjournal.com/article/6933
http://www.linuxjournal.com/article/7162
mailto:info@linuxjournal.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

 New Products

Red Hat Enterprise Linux 3, MontaVista DevRocket Development Environment
and more.

Red Hat Enterprise Linux 3

Red Hat Enterprise Linux 3 now is available to support enterprise computing
needs, from desktops to servers, on seven hardware architectures. Designed to
offer a secure and consistent enterprise-wide platform, Red Hat Enterprise
Linux 3 includes a native POSIX threading library for multithreading
applications and a single code base. Other new features for version 3 include
support for larger SMP, memory and I/O configurations; a 4-4 memory split to
provide increased kernel and user address space for x86 systems; and Java
implementations from BEA, IBM and Sun. The seven supported hardware
architectures are x86, Itanium, AMD64 and IBM's zSeries, iSeries, pSeries and S/
390.

Red Hat, Inc., PO Box 13588, RTP, North Carolina 27709, 919-754-3700,
www.redhat.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/118/7254f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7254f1.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7254f1.large.jpg

MontaVista DevRocket Development Environment

MontaVista DevRocket 1.0 is a fully integrated and graphical development
environment for embedded Linux. Based on Eclipse technology, it provides a
common look-and-feel across development host platforms including Linux,
Microsoft Windows and Solaris. MontaVista DevRocket is built on the latest
Eclipse 2.1 base, letting customers and ISVs take full advantage of the Eclipse
platform, including third-party development work contributed by the Eclipse
community, as well as a multitude of Eclipse-supported tools. In addition to
integrating core development capabilities such as compilation, editing and
debugging, DevRocket provides easy-to-use project wizards designed to
automate common embedded development activities.

MontaVista Software, 1237 East Arques Avenue, Sunnyvale, California 94085,
408-328-9200, www.mvista.com.

NIOS Platform

Net Integration Technologies offers an autonomic computing network platform
based on its Net Integrator Operating System (NIOS), which is based on Linux.
Designed to be self-repairing and self-maintaining, the NIOS Platform uses off-
the-shelf hardware and is geared toward small- and mid-sized businesses. NIOS
itself is built from open-source software and is 16MB in size. Included in the
NIOS Platform is NetIntelligence, an artificial intelligence module that uses
autonomic features to deploy, install and maintain system components and
internal subsystems, including firewall and DHCP parameters and DNS records.
The SystemER program enables system recovery from catastrophic failure in
under two minutes. Other components include ExchangeIt!, a collaboration
server; TunnelVision, an intelligent VPN solution that works without static IP
addresses; Expression Desktop; and DoubleVision, a redundant Internet
connectivity technology designed to connect multiple high-speed interfaces to
NIOS-powered servers.

Net Integration Technologies, Inc., 7300 Warden Avenue, Suite 106, Markham,
Ontario, Canada L3R 9Z6, 866-384-8324, www.net-itech.com.

Xandros Desktop 2.0

Xandros Desktop 2.0 now is available and offers an easy-to-use graphical
environment that installs with four mouse-clicks. Based on the Sarge version of
Debian and a Xandros-enhanced version of KDE 3.1.4, key Xandros features
include a four-click installation process with automatic disk partitioning, drag-
and-drop CD burning within the File Manager and file and resource sharing
with Windows networks. Desktop 2.0 offers standards-compliant Web browsing
of multiple sites in a single tabbed window; a mail reader with automatic spam
filtering and the ability to turn off pop-up ads and banners; an instant
messaging client that is compatible with MSN, Yahoo, AOl, ICQ and IRC; and
OpenOffice.org 1.1. Xandros Desktop 2.0 comes in Standard Edition and Deluxe
Edition. Deluxe Edition includes CrossOver Office 2.1; a 350-page user guide;
extra games, applications and tools; and 60 days of e-mail support.

Xandros, Inc., 41 East 11th Street, 11th Floor, New York, New York 10003,
613-842-3494, www.xandros.com.

TimeStorm Linux Tool Suite

TimeSys' new TimeStorm Linux Tool Suite contains development tools that
support the entire embedded Linux development cycle, no matter what type of
embedded OS is being used. Built on the Eclipse Platform, the TimeStorm suite
includes tools to handle kernel porting, hardware integration and a full range of
testing and validation requirements. Delivered as plugins to TimeSys'
TimeStorm IDE, the Tool Suite works with any embedded Linux distribution,
homemade or commercial. The Tool Suite includes the TimeStorm Linux

https://secure2.linuxjournal.com/ljarchive/LJ/118/7254f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7254f3.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7254f3.large.jpg

Verification Suite, a framework that automates the testing and validation of an
entire embedded distribution and its applications at each step in the
development process. More than 1,150 open-source tests are available. The
Linux Development Suite provides tools to help developers build and port a
custom Linux OS to target hardware. The Linux Hardware-Assisted Debug
assists in hardware debugging, initialization and Linux bring-up by providing an
interface between the TimeStorm IDE and JTAG and on-chip debuggers using
GDB.

TimeSys, 925 Liberty Avenue, 6th Floor, Pittsburgh, Pennsylvania 15222,
412-232-3250, www.timesys.com.

Global Navigator 5.0

Global Navigator 5.0, from NEC, is a monitoring solution for tracking call activity
and agent performance across single or mulitple contact centers. Global
Navigator provides enterprise-wide call center management, as well as added
control on a single or multisite network level. The application uses Infocast,
real-time information delivery software that sends contact center statistics to a
small window at the agent's workstation. New for version 5.0 is the migration of
Global Navigator to Linux from SCO UNIX and the use of MySQL as the
database management system.

NEC America, Inc., 6555 North State Highway 161, Irving, Texas 75039,
800-338-9549, www.cng.nec.com/cng.

Archive Index Issue Table of Contents

https://secure2.linuxjournal.com/ljarchive/LJ/118/7254f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7254f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/118/7254f4.large.jpg
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/118/toc118.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	Indepth
	Embedded
	Toolbox
	Columns
	Reviews
	Departments
	LAMP Development at Public Sector Web Sites
	Tom

Adelstein
	Driving Linux
	Open-Source Software Institute
	devIS
	gOSapps LLC
	National Center for State Courts
	Conclusion

	The REDACLE Work-Flow Management System
	Giovanni

Organtini
	Luciano
 M.
Barone
	Work-Flow Management
	REDACLE: the Database Design
	REDACLE Interfaces
	Experience and Perspectives

	Magnatune, an Open Music Experiment
	John Buckman
	Industry Observations
	The Home Page
	The Genre Page
	Software Used
	E-Commerce
	After the Payment
	Licensing
	What's Next?

	DIY-IT: How Linux and Open Source Are Bringing Do-It-Yourself to Information
Technology
	Doc Searls
	Follow Which Leader?
	The Networked IT World
	The Cost-Savings Imperative
	Valuing Talent
	Where We Stand
	Untold Stories
	Perspective

	Improving Perl Application Performance
	Bruce W. Lowther
	Identifying Performance Problems
	Benchmarking
	Refactoring and Verification
	Hasn't Someone Already Done This?
	An Out-of-Language Experience
	Conclusions

	Asterisk Open-Source PBX System
	Brett Schwarz
	Background
	Getting Started
	The Dialplan
	Creating IAX Users
	Setting Up Voice Mail
	Defining Extensions
	Using AGI
	Making a Call
	Conclusion
	Acknowledgements

	A Guided Tour of Ethereal
	Brad Hards
	How Ethereal Works
	Key Features
	Misfeatures and Omissions

	LinuxBIOS at Four
	Ronald G. Minnich
	LinuxBIOS Structure
	Origins and Evolution of LinuxBIOS
	Platforms
	Chipset Secrets
	Conclusions
	Acknowledgements

	I2C Drivers, Part II
	Greg Kroah-Hartman
	Registering a Chip Driver
	What to Do When the Chip Is Found
	I2C and sysfs
	Cleaning Up
	Conclusion

	Kernel Korner
	I/O Schedulers
	Robert Love
	The Linus Elevator
	The Deadline I/O Scheduler
	Anticipatory I/O Scheduler
	Acknowledgement

	Cooking with Linux
	The Customer Is Always Served
	Marcel Gagné

	Paranoid Penguin
	Seven Top Security Tools
	Mick Bauer
	Netfilter/iptables
	Bastille
	Nmap
	Nessus
	Fuzzing with Paros
	F.I.R.E.
	Conclusions

	EOF
	Linux vs. SCO—A Foregone Conclusion
	Jim Ready

	AstroFlowGuard Appliance
	José Nazario
	Setup Out of the Box
	Strengths
	Drawbacks, Big and Small
	What's Coming Next
	Conclusion

	UNIX Systems Programming: Communication, Concurrency,
and Threads by Kay A. Robbins and Steven Robbins
	Ibrahim Haddad

	Letters
	Laptop Vendor Catches the Cluetrain
	Porting US House of Representatives Software to Linux?
	SE Linux from Outside the USA
	Mandrake Automatically Recognizes Pen Drives
	Traffic Shaping Advantage
	SATA Question on Ultimate Linux Box
	Photo of the Month
	Errata

	UpFront
	diff -u: What's New in Kernel Development
	SQL-Ledger: www.sql-ledger.com
	They Said It
	gtick: www.antcom.de/gtick linuxdevices.com
	LJ Index—February 2004

	From the Editor
	Web Technologies for Business Apps
	Don Marti

	Best of Technical Support
	USB Joystick?
	Configuring a New Network Card
	Setting Up Wi-Fi Restricted Mode on SuSE
	Red Hat 7.2 and Ethernet Card
	Reconfiguring Wireless Keys for Different Sites
	Managing Desktop Users and Policies?

	On the Web
	New Product Hype
	Heather Mead

	New Products
	Red Hat Enterprise Linux 3
	MontaVista DevRocket Development Environment
	NIOS Platform
	Xandros Desktop 2.0
	TimeStorm Linux Tool Suite
	Global Navigator 5.0

